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Abstract

In these notes, we study the effectiveness of iterative methods for solving variational inequality (VI)
problems defined over compact, convex sets. We begin by introducing the Minty variational inequality
(MVI) problem, a dual formulation of the classical Stampacchia variational inequality (SVI) problem.
We then present the Proximal Point Algorithm (PPA), a conceptual method for solving VIs defined
by strongly monotone operators. We show how Projected Gradient Descent (PGD) achieves comparable
performance when applied to such problems. Finally, we explain how the Extra-Gradient Method (EGM)
can be used to solve VIs problems with monotone, rather than strongly monotone, operators

Disclaimer. These lecture notes are a working draft and will be revised and expanded over time. They do not aim to cover the

subject exhaustively; the goal is to highlight key ideas and develop some central proofs in detail. The topic is an active research

area, so both the notes and our understanding of the material may evolve.
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1 Variational inequalities
Recall that, given a nonempty set X ⊆ Rd and an operator F : X → Rd, the Stampacchia variational
inequality (SVI) problem PSVI(F,X ) seeks x⋆ ∈ X such that〈

F (x⋆), x− x⋆
〉
≥ 0, ∀x ∈ X . (1)

In a previous lecture, we saw that whenever X is convex and compact and F is continuous, solutions to the
SVI problem exist [1]. Moreover, if F is strongly monotone, the solution is unique [2].

Furthermore, we saw that in the context of continuous games, SVIs provide a powerful framework to
characterize the Nash equilibria (NE) of the game. In particular, suppose G =

{
JnK, (Si)i∈JnK, (ui)i∈JnK

}
is an

n-player continuous game with convex strategy sets S1, . . . , Sn, and differentiable payoff functions ui : S → R,
for all i ∈ JnK, such that each ui(·, s−i) is concave for every fixed s−i ∈ S−i, where S = S1×· · ·×Sn denotes
the joint strategy space. Then, the NE of G coincide with solutions of the SVI problem PSVI(F,S) [3], where
F : S → Rd is the pseudo-gradient of G defined as

F (s) =


−∇s1u1(s)

...

−∇snun(s)

 , ∀s ∈ S. (pseudo-gradient)

1.1 The Minty variational inequalities problem
We now introduce another canonical formulation of variational inequality (VI) problems due to Minty [4],
which is defined as follows:

Definition 1 (Minty VI.). Given a nonempty set X ⊆ Rd and an operator F : X → Rd, the Minty variational
inequality (MVI) problem PMVI(F,X ) is to

find x⋆ ∈ X such that
〈
F (x), x− x⋆

〉
≥ 0, for all x ∈ X . (2)

Here, ⟨·, ·⟩ denotes the standard inner product in Rd. Any x⋆ ∈ X satisfying (2) is called a solution of the
MVI problem PMVI(F,X ).

Observe that the evaluation point of the operator F is inverted in (1) and (2). In particular, in (1) F is
evaluated at the unknown solution x⋆, whereas in (2) it is evaluated at the test point x. This has important
algorithmic implications, as we will see in subsequent sections. In particular, the merit functions associated
with these two problems are different, which leads to different convergence analyses for algorithms designed
to solve them. However, before proceeding, we introduce a couple of basic properties of the solutions to the
MVI problem and those of the SVI problem. The proofs of these results are provided for completeness; a
mre extensive treatment can be found in Facchinei et al. [5].

Relationship between SVI and MVI. Let us first observe that under mild assumptions, any solution
of the MVI problem is also a solution of the SVI problem. Formally, we have the following theorem.

Theorem 2. Suppose X ⊆ Rd is a nonempty convex set and F : X → Rd is a continuous operator. Then
any solution of the MVI problem PMVI(F,X ) is also a solution of the SVI problem PSVI(F,X ).

Proof. Suppose x⋆ ∈ X is a solution of PMVI(F,X ), i.e., it satisfies (2).
Fix any arbitrary x ∈ X . For each t ∈ [0, 1], define the point

xt = x⋆ + t(x− x⋆) ∈ X . (3)

Since X is convex, it follows that xt ∈ X for every t ∈ [0, 1]. Thus, by (2), we have that

⟨F (xt), xt − x⋆⟩ ≥ 0 =⇒ ⟨F (xt), t(x− x⋆)⟩ ≥ 0 =⇒ ⟨F (xt), x− x⋆⟩ ≥ 0, ∀t ∈ [0, 1]. (4)
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Furthermore, since F is continuous, we have that

lim
t→0+

〈
F (xt), x− x⋆

〉
=

〈
F (limt→0+ xt), x− x⋆

〉
=

〈
F (x⋆), x− x⋆

〉
. (5)

Thus, by taking the limit as t → 0+ on both sides of the previous inequality, we obtain

⟨F (x⋆), x− x⋆⟩ ≥ 0. (6)

Finally, since x ∈ X was chosen arbitrarily, we conclude that x⋆ satisfies (1), and therefore, is a solution of
PSVI(F,X ).

The converse of Theorem 2 does not hold in general. However, under the assumption that F is monotone,
we have the following result.

Theorem 3. Suppose F : X → Rd is a monotone operator on a nonempty set X ⊆ Rd. Then any solution
of the SVI problem PSVI(F,X ) is also a solution of the MVI problem PMVI(F,X ).

Proof. Suppose x⋆ ∈ X is a solution of PSVI(F,X ), i.e., it satisfies (1).
Recall that a monotone operator F : X → Rd saitisfies

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x, y ∈ X . (7)

Thus, by setting y = x⋆, it follows that

⟨F (x)− F (x⋆), x− x⋆⟩ ≥ 0 =⇒ ⟨F (x), x− x⋆⟩ ≥ ⟨F (x⋆), x− x⋆⟩ ≥ 0, ∀x ∈ X . (8)

where the last inequality follows from (1). Hence, x⋆ also satisfies (2), and is therefore a solution of the MVI
problem PMVI(F,X ).

In summary, we have established the following important relationship between SVIs and MVIs.

Corollary 4. Suppose X ⊆ Rd is a nonempty convex set and F : X → Rd is a continuous monotone operator.
Then the solutions of the SVI problem PSVI(F,X ) and the MVI problem PMVI(F,X ) are identical.

1.2 Merit functions for VI problems
To analyze the convergence of algorithms for solving VI problems, it is useful to introduce appropriate
merit functions that quantify how close a given point is to being a solution to the corresponding variational
inequality problems. In particular, for the SVI problem PSVI(F,X ), we define the Stampacchia gap function,

GS(y) = sup
x∈X

⟨F (y), y − x⟩, ∀y ∈ X . (GS)

Similarly, for the MVI problem PMVI(F,X ), we define the Minty gap function,

GM (y) = sup
x∈X

⟨F (x), y − x⟩, ∀y ∈ X . (GM )

Note that if x = y, we have that ⟨F (y), y − x⟩ = ⟨F (x), y − x⟩ = 0. Thus, GS(y), GM (y) ≥ 0 for all y ∈ X .
Moreover, by (1), y⋆ ∈ X is a solution of the SVI problem PSVI(F,X ) if and only if GS(y

⋆) ≤ 0; thus,
GS(y

⋆) = 0. Similarly, by (2), y⋆ is a solution of the MVI problem PMVI(F,X ) if and only if GM (y⋆) = 0.
Now observe that if F is monotone, then, by definition, we have that

⟨F (x)− F (y), x− y⟩ ≥ 0 =⇒ ⟨F (x), y − x⟩ ≤ ⟨F (y), y − x⟩ =⇒ GM (y) ≤ GS(y), ∀x, y ∈ X . (9)

Thus, for monotone operators, the MVI merit function lower bounds the SVI merit function. In addition,
if X is convex, then by Corollary 4, the solutions of the two problems coincide. Therefore, for monotone
operators on convex sets, both merit functions can be used to quantify the quality of approximate solutions
to either VI problem, with GM providing a potentially tighter measure than GS .
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2 Proximal methods
Having established the relationship between Stampacchia VI and Minty VI problems, we now study algo-
rithms for solving them. We begin our discussion with the Proximal Point Algorithm (PPA), a conceptual
benchmark against which we are going to compare more practical algorithms in later sections.

2.1 The resolvent operator
Consider a convex set X ⊆ Rd and a strongly monotone operator F : X → Rd. Recall that, since X is convex,
x⋆ ∈ X is a solution of the Stampacchia VI problem PSVI(F,X ) if and only if

−F (x⋆) ∈ NX (x⋆) ⇐⇒ 0 ∈ (F +NX )(x⋆), (10)

where NX (x⋆) denotes the normal cone of X at the point x⋆; i.e.,

NX (x⋆) =
{
y ∈ Rd

∣∣ ⟨y, x− x⋆⟩ ≤ 0, ∀x ∈ X
}
. (normal cone)

Observe that, by the N ’s definition, we have that 0 ∈ NX (x) for all x ∈ X .
Define the operator T : X → 2R

d

as the set-valued operator given by

T (x) = F (x) +NX (x), ∀x ∈ X . (11)

Then, by (10), solving the Stampacchia VI problem PSVI(F,X ) is equivalent to finding a point x⋆ ∈ X such
that 0 ∈ T (x⋆). Observe that, since F is a strongly monotone operator, it follows that the operator T defined
in (11) is also strongly monotone. Indeed, if F is µ-strongly monotone for some µ > 0, then for all x, y ∈ X ,
and for all u ∈ T (x) and v ∈ T (y), we have that exist zx ∈ NX (x) and zy ∈ NX (y) such that u = F (x) + zx
and v = F (y) + zy. Thus, since F is µ-strongly monotone, we have that

⟨u− v, x− y⟩ =
〈
F (x)− F (y), x− y

〉
+ ⟨zx − zy, x− y⟩︸ ︷︷ ︸

=0

≥ µ · ∥x− y∥22, (12)

and therefore, T is also µ-strongly monotone.

2.2 The Proximal Point Algorithm
Given λ > 0, define the resolvent Jλ : Rd → X as

JλT (y) = (I+ λT )−1(y), ∀y ∈ Rd. (13)

Note that, for general operators T , the resolvent JλT is a set-valued mapping. However, since T is strongly
monotone, JλT (y) is single-valued for all y ∈ Rd [6]; thus, it is well defined.

The PPA generates a sequence {xk}k∈N according to the following recursion:

xk+1 = JλT (xk), ∀k ∈ N. (14)

However, since JλT (xk) involves computing the preimage of xk under the mapping I + λT , each iteration
of the PPA may be computationally expensive. Nevertheless, the PPA enjoys strong convergence guarantees
when F is a strongly monotone.

Theorem 5 (Rockafellar [6]). Suppose X ⊆ Rd is a nonempty, compact, and convex set and F : X → Rd

is a continuous and strongly monotone operator. Then for any initial point x0 ∈ Rd, the sequence {xk}k∈N
generated by the PPA converges to the unique solution of the SVI problem PSVI(F,X ) at a linear rate.

Proof. Suppose F is µ-strongly monotone for some µ > 0. Then, for all y ∈ Rd, the resolvent JλT (y) is
single-valued. Thus, by (13), we have that

JλT (y) = x =⇒ y ∈ x+ λT (x)∀x ∈ X , y ∈ Rd. (15)

3
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Furthermore, since X is nonempty, compact, and convex, and F is continuous and strongly monotone, the
Stampacchia VI problem PSVI(F,X ) has a unique solution x⋆ ∈ X . Then, by (10), we have that

0 ∈ T (x⋆) =⇒ x⋆ ∈ x⋆ + λT (x⋆). =⇒ x⋆ = JλT (x
⋆). (16)

Fix k ∈ N to be arbitrary. Then, by (15), there exists y ∈ T (xk) such that

xk = xk+1 + λy,
λ>0
=⇒ y =

1

λ
(xk − xk+1). (17)

Thus, since T is µ-strongly monotone, we have that

µ · ∥xk+1 − x⋆∥22
0∈T (x⋆)

≤ ⟨y, xk+1 − x⋆⟩ (18a)

=
1

λ
⟨xk − xk+1, xk+1 − x⋆⟩ (18b)

=
1

λ
⟨xk − x⋆, xk+1 − x⋆⟩ − 1

λ
∥xk+1 − x⋆∥22, (18c)

which implies that

(1 + λµ) · ∥xk+1 − x⋆∥22 ≤ ⟨xk − x⋆, xk+1 − x⋆⟩ ≤ ∥xk − x⋆∥2 · ∥xk+1 − x⋆∥2. (19)

where the last inequality follows from the Cauchy–Schwarz inequality.
If xk+1 = x⋆, then the sequence {xk}k∈N has converged to the solution of the Stampacchia VI problem

PSVI(F,X ). If xk+1 ̸= x⋆, we can divide both sides by (1 + λµ) · ∥xk+1 − x⋆∥2 to obtain

∥xk+1 − x⋆∥2 ≥ 1

1 + λµ
· ∥xk − x⋆∥2 ≥ · · · ≥ 1

(1 + λµ)k+1
· ∥x0 − x⋆∥2. (20)

Although the PPA is not a practical algorithm due to the computational cost of each iteration, it serves as a
useful conceptual benchmark for more practical algorithms that we are going to discuss in the next sections.
In particular, we are going to see that Projected Gradient Descent (PGD) can match (asymptotically) the
linear convergence rate of the PPA when F is strongly monotone and Lipschitz continuous. However, it fails
to converge when F is only monotone, whereas the PPA still converges in this case (albeit at a sublinear
rate). Finally, we are going to see that the Extra-Gradient Method (EGM) converges at a sublinear rate
when F is only monotone, asymptotically matching the convergence rate of the PPA in this case.

3 The Projected Gradient Descent
We have already discussed the PPA, which is a conceptual algorithm for solving SVI problems. Let us now
discuss a more practical algorithm for solving SVI problems, namely PGD. Recall that PGD is an iterative
method that, given an initial point x0 ∈ X and a step-size α > 0, generates a sequence {xk}k∈N according
to the recursion

xk+1 = ΠX
(
xk − αF (xk)

)
(21)

In contrast to the PPA, to prove the convergence of PGD we need to impose stronger assumptions on
the operator F . In particular, we need to assume that F is Lipschitz continuous. Its rate of convergence
depends on both the Lipschitz constant and the strong monotonicity parameter of F . Formally, we have the
following theorem.

Theorem 6 (Zarantonello [7]). Suppose X ⊆ Rd is a nonempty, compact, and convex set, and F : X → Rd

is an L-Lipschitz continuous and µ-strongly monotone operator for some L, µ > 0. Then for any initial point
x0 ∈ X , the sequence {xk}k∈N generated by the PGD with step-size α ∈ [0, 2µ/L2] converges to the unique
solution of the SVI problem PSVI(F,X ) at a linear rate.

4
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Proof. Fix y ∈ Rd to be arbitrary. Then, since X is a compact and convex set, and the function f(x) =
1
2∥x−y∥22 is strongly convex, the projection ΠX (y) is a Karush–Kuhn–Tucker (KKT) point for minx∈X f(x);
that is, a point z ∈ X such that

⟨z − y, x− z⟩ ≥ 0, ∀x ∈ X . (22)

Since F is strongly monotone, the SVI problem PSVI(F,X ) has a unique solution x⋆ ∈ X that satisfies
(1). We show that x⋆ = ΠX (x⋆ − αF (x⋆)), i.e., (22) holds for z = x⋆ and y = x⋆ − αF (x⋆).

⟨z − y, x− z⟩ =
〈
x⋆ −

(
x⋆ − αF (x⋆)

)
, x− x⋆

〉
= α⟨F (x⋆), x− x⋆⟩ ≥ 0, (23)

where the last inequality follows from (1). Thus, x⋆ is a fixed point of the PGD update.
Next, we show that the sequence {xk}k∈N converges to x⋆ at a linear rate. Since X is a compact, convex

set, the projection operator ΠX is 1-Lipschitz continuous. This is intuitive, but it can also be formally show
this using (22). Thus, for any k ∈ N, we have that

∥xk+1 − x⋆∥2 =
∥∥ΠX

(
xk − αF (xk)

)
−ΠX

(
x⋆ − αF (x⋆)

)∥∥
2
≤

∥∥(xk − αF (xk)
)
−
(
x⋆ − αF (x⋆)

)∥∥
2
. (24)

Then by squaring both sides, we obtain

∥xk+1 − x⋆∥22 ≤ ∥xk − x⋆∥22 − 2α⟨F (xk)− F (x⋆), xk − x⋆⟩+ α2∥F (xk)− F (x⋆)∥22. (25)

Suppose that F is L-Lipschitz continuous and µ-strongly monotone for some L, µ > 0. Then, by the
definitions of Lipschitz continuity and strong monotonicity, we have that

∥F (xk)− F (x⋆)∥22 ≤ L2 · ∥xk − x⋆∥22, and ⟨F (xk)− F (x⋆), xk − x⋆⟩ ≥ µ · ∥xk − x⋆∥22. (26)

Thus, substituting these inequalities into the previous one, we obtain

∥xk+1−x⋆∥22 ≤
(
1−2αµ+α2L2

)
·∥xk−x⋆∥22 ≤ · · · ≤

(
1−2αµ+α2L2

)k+1·∥x0−x⋆∥22. = qk+1·∥x0−x⋆∥22, (27)

where we defined q = 1 − 2αµ + α2L2. Finally, observe that for any step-size α ∈ [0, 2µ/L2], we have that
q ∈ [0, 1], which establishes the desired linear convergence rate.

So we have established that PGD converges linearly to the unique solution of the SVI problem PSVI(F,X )
when F is Lipschitz continuous and strongly monotone. However, unlike the PPA, PGD is a practical
algorithm since each iteration only requires evaluating the operator F once and computing a projection onto
the set X .

4 The Extra-Gradient Method
Let us now focus on the same setting as in Theorem 6, i.e., suppose X ⊆ Rd is a nonempty, compact, and
convex set, and let F : X → Rd be an L-Lipschitz continuous operator for some L > 0. However, instead of
assuming that F is strongly monotone, we are only going to assume that it is monotone.

In this case, the PGD method may fail to converge to a solution of the SVI problem PSVI(F,X ). In
particular, it is possible to construct simple examples of monotone and Lipschitz continuous operators F for
which the sequence {xk}k∈N generated by the PGD method oscillates and does not converge. To address
this issue, we can use EGM, which is an iterative method that, given an initial point x0 ∈ X and a step-size
α > 0, generates sequences {(}xk)k∈N and {(}yk)k∈N according to the recursion

yk = ΠX
(
xk − αF (xk)

)
, (28a)

xk+1 = ΠX
(
xk − αF (yk)

)
. (28b)

It is possible to show the following intermediate bound for the sequences generated by the EGM method.

5
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Lemma 7. Suppose X ⊆ Rd is a nonempty, compact, and convex set, and F : X → Rd is an L-Lipschitz
continuous and monotone operator for some L > 0. Then for any initial point x0 ∈ X , the sequences (xk)k∈N
and (yk)k∈N generated by the EGM with step-size α = 1/L satisfy

⟨F (yk), yk − x⟩ ≤ 1

2α
·
(
∥xk − x∥22 − ∥xk+1 − x∥22

)
, ∀x ∈ X , ∀k ∈ N. (29)

The proof of this result can be found in Nemirovski [8]. Using Lemma 7, we can now establish the convergence
of the EGM in the monotone case.

Theorem 8 (Nemirovski [8]). Suppose X ⊆ Rd is a nonempty, compact, and convex set, and F : X → Rd

is a L-Lipschitz continuous and monotone operator for some L > 0. Then for any initial point x0 ∈ X , the
sequence {xk}k∈N generated by the EGM with step-size α = 1/L converges on average to a solution of the
SVI problem PSVI(F,X ) at a rate of O(1/k).

Proof. Fix K ∈ N to be arbitrary. Then, by summing both sides of (29) from k = 0 to k = K − 1, we have
that

K−1∑
k=0

⟨F (yk), yk − x⟩ ≤ 1

2α
·
(
∥x0 − x∥22 − ∥xK − x∥22

)
≤ 1

2α
· ∥x0 − x∥22, ∀x ∈ X . (30)

Since X is compact, there exists R > 0 such that ∥x0 − x∥2 ≤ R for all x ∈ X . Then, by dividing both sides
by K, we have that

1

K

K−1∑
k=0

〈
F (yk), yk − x

〉
≤ R2

2αK
. (31)

By the monotonicity of F , we have that

⟨F (x)− F (yk), x− yk⟩ ≥ 0, =⇒ ⟨F (yk), yk − x⟩ ≥ ⟨F (x), yk − x⟩ ∀x ∈ X , ∀k ∈ N. (32)

Define the average iterate

ȳK =
1

K

K−1∑
k=0

yk. (33)

Then, by the convexity of the set X , we have that ȳK ∈ X , and therefore, by the linearity of the inner
product, we have that

⟨F (x), ȳK − x⟩ = 1

K

K−1∑
k=0

⟨F (x), yk − x⟩ ≤ 1

K

K−1∑
k=0

⟨F (yk), yk − x⟩ ≤ R2

2αK
, ∀x ∈ X . (34)

Thus, we have established that the Minty gap function of the average iterate ȳK satisfies

GMX (ȳK) = suppx∈X ⟨F (x), ȳK − x⟩ ≤ R2

2αK
= O

( 1

K

)
. (35)
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