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Abstract

These notes introduce the price of anarchy (PoA) for routing games as a metric of inefficiency. We
first treat the nonatomic model, defining flows, latency functions, and Wardrop equilibria, and the PoA
for nonatomic routing games. Pigou’s example gives a lower bound of 4/3 on the PoA for affine latency
functions, and we show this is tight via a reduction to Pigou-like instances. We then introduce atomic
routing games with unit-demand players, define Nash equilibria (NE) and the PoA for atomic routing
games, and present an affine example yielding a lower bound of 5/2. Finally, we prove that this bound
is tight for the entire class of affine latency functions.
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1 Nonatomic routing games

Recall that a Nash equilibrium (NE) is a stable state of a game in which no player can improve their payoff
by unilaterally deviating. However, a game may admit multiple NE, raising the question of how to assess
the quality of these equilibria. The price of anarchy (PoA) addresses this by quantifying the inefficiency of
an NE relative to a suitably defined optimal outcome.

To make these ideas concrete, we begin our discussion in the setting of a nonatomic routing game, in
which the analogue of an NE is the Wardrop equilibrium. Under standard continuity and monotonicity
assumptions on the cost functions, Wardrop equilibria exist; moreover, all Wardrop equilibria induce the
same aggregate cost, and thus the equilibrium quality is unambiguous. Finally, in a nonatomic routing
game, no-regret learning dynamics drive play, on average, toward the set of Wardrop equilibria [1]|, which
further motivates using the PoA to measure the inefficiency of outcomes arising from a learning process.

1.1 From normal-form games to nonatomic routing games

Consider an n-player normal-form game ¢ = ([n], {a1, a2}", {u;}ic[n) in which each player i € [n] has two
pure strategies, a; and aso, and the payoff functions are:

{_izy1 1Si:5j, lf S; =, (1)
—1, if S; = (g,

for all ¢ € [n] and all strategy profiles s € {a1,a2}™. In words, if player ¢ chooses a1, their payoff is the
negative of the fraction of players (including player i) who also choose 1. If player ¢ chooses s, their payoff
is simply —1.

Let = € [0, 1] be the fraction of players who choose «; in a strategy profile s. Then the payoff of any
player choosing a; is —x, while the payoff of any player choosing as is —1. Since payoffs depend only on
the fraction x and not on the identities of the players, this description continues to make sense as n grows.
In the limit » — oo, we obtain a nonatomic routing game with a continuum of players, i.e., a population,
each choosing between two routes, «y and «g with latencies (costs) x and 1, respectively. You may think of
this limit as a game in which each individual player has negligible influence on the overall outcome. More
generally, a nonatomic routing game is given by a tuple (g, {Ce}eeg), where G = (V,€) is a directed graph
with a designated source—sink pair (s,t) € ¥V x V, and each arc e € £ has an associated latency function
¢e: R>¢g — R>¢ that specifies the travel time on e as a function of the fraction of the population (the flow)
on e. Throughout, we assume that all latency functions are continuous, nonnegative, and nondecreasing.

As an example, consider the simple routing game depicted in Figure 1, known as Pigou’s example.

Cep(z) =

Ceg(z) =1
Figure 1: Pigou’s example of a nonatomic routing game.

There are two parallel arcs from the source s to the sink ¢. The latency function on the upper arc e; is
Ce, () = x, while the latency function on the lower arc e is ¢, (z) = 1. This game is strategically equivalent
to the limit of the normal-form game in (1) as n — oo, in which choosing arc e; corresponds to strategy s,
and choosing arc e corresponds to strategy ao.

Flows. The analogue of a pure strategy in a nonatomic routing game is a flow. Let P € 2 be the set of
all simple paths from the source s to the sink ¢ in the graph G. A flow is a |P|-dimensional vector (fp)pep
with f, > 0 for all p € P and Zpep fp = 1; it assigns to each path p a value f,, representing the fraction of
the population that chooses path p. We denote the set of all feasible flows by F.



Given a flow f € F, we may induce a flow on the arcs of the graph. That is, for each arc e € £, we may
compute the fraction of the population that uses arc e as part of their chosen path. Formally, the induced
flow is given by

fe=> fp Ve€k. (2)

poe

As an example, consider the nonatomic routing game in Figure 2, known as Braess’s paradox.

Figure 2: Braess’s paradox.

In this game, there are three simple paths from s to ¢: the upper path s — a — t, the lower path s — b — ¢,
and the zigzag path s — a — b — t. Suppose that the flow f is such that 50% of the population chooses
the upper path s — a — t, and 50% chooses the lower path s — b — t. Then the induced flow on each arc
is f(s,a) = flaty = fs,p) = fo,ey = 0.5, while f(4 ) = 0. We will return to this example later to see why it is
paradoxical.

Path latency and social cost. The latency experienced by players choosing path p € P under flow f € F
is the accumulated latency over all arcs e on path p, i.e.,

Cp(f):ZCe(fe), Vp e P. (3)

ecp

In the example above, the latency experienced by players choosing the upper path s = a — tis ¢sq—t(f) =
C(s,a)(0.5) + ¢(a,4)(0.5) = 0.5 + 1 = 1.5, while the latency experienced by players choosing the lower path
s—=b—otis csmpt(f) = C(s,b) (0.5) + C(b,t) (0.5) =140.5=1.5.

Since each infinitesimal player experiences only the latency of their chosen path, the average latency is a
natural measure of the overall performance of a flow. We define the social cost C(f) of a flow f to be this
average latency. Formally,

C(H=)_ foralf) VfEF. (4)

peEP

In the example above, the social cost of flow f is C(f) =0.5-1.5+0.5-1.5 = 1.5.

Simplifications. To keep the notation compact, the definition of a nonatomic routing game above assumes
a single source-sink pair (s,t¢) and a total demand (population) of 1 unit of flow to be routed from s to t.
The normalization to 1 unit of flow is without loss of generality, since we can always rescale the latency
functions accordingly. If there are multiple source—sink pairs, we can view of the game as consisting of
multiple populations, each with its own source-sink pair and demand. All results presented in these notes
extend in a straightforward way to this more general setting.

1.2 Wardrop equilibria.

A Wardrop equilibrium captures the idea that no player can reduce their latency by wnilaterally changing
their route from s to t. This is the continuum analogue of an NE, in which no infinitesimal player can reduce
their latency by unilaterally deviating. Formally, a flow f* € F is a Wardrop equilibrium if, for all paths
p € P with positive flow f > 0, the latency c,(f*) is minimal; i.e.,

(f*) S e (f*), V' eP. (5)



In other words, all the paths that are used in a Wardrop equilibrium have the minimal possible latency. We
let F* C F denote the set of all Wardrop equilibria.
By definition, it follows that if a flow f* € F* is a Wardrop equilibrium, then

cp(f*) = e (f*), Vp,p' € P with f, i > 0. (6)

Indeed, if there were two paths p,p’ € P with positive flow such that ¢,(f*) < ¢,/ (f*), then players using
path p’ could reduce their latency by switching to path p, contradicting (5). Consequently, in a Wardrop
equilibrium, all players experience the same latency regardless of the path they choose. This implies that
the social cost at a Wardrop equilibrium is simply the common latency experienced by all players. Let ¢(f*)
denote the common latency; the social cost at f* is

CUf )= _fr-colf)=c(f*)- D> f5=clf)-1=c(f). (7)

peEP peEP

In the next section, we will compare the social cost of Wardrop equilibria to that of an optimal flow,
leading to the notion of the PoA in nonatomic routing games. First, there are a few nontrivial facts about
the Wardrop equilibria for nonatomic routing games with continuous and nondecreasing latency functions
that are worth mentioning before we define the PoA in nonatomic routing games. In particular, the Wardrop
equilibria are the solutions to a convex optimization problem over a compact conver set [2]. Consequently,
a Wardrop equilibrium always ezists in such games. Furthermore, all Wardrop equilibria have the same
social cost [2], and therefore the quality of a Wardrop equilibrium is unambiguous: it is the social cost of
any a Wardrop equilibrium.

1.3 The price of anarchy of nonatomic routing games

Let us take another look at Braess’s paradox in Figure 2. Previously, we considered the flow f in which 50%
of the population chooses the upper path s — a — t and 50% chooses the lower path s — b — ¢. We found
that the induced flow on each arc is f(, o) = f(a,) = f(s,p) = fo,r) = 0.5, while f(, ;) = 0, and that the social
cost of this flow is C(f) = 1.5. Is this flow a Wardrop equilibrium? To check, we compute the latencies of
each path under flow f:

Csﬂaﬁt(f) = C(s,a) (0.5) + C(a 1) (0.5) =05+1=1.5; (8&)
Csﬁbﬁt(f) = C(s,b) (05) + C(b,t) (05) =14+0.5=1.5; (8b)
Cosasvnt () = lamy(0.5) + c(apy(0) + €y (0.5) = 0.5+ 0+ 0.5 = 1. (8¢)

We see that players using the zigzag path s — a — b — t experience latency of 1, which is less than
the latency of 1.5 experienced by players using the other two paths. Thus, players using either the upper
path s — a — t or the lower path s — b — t could reduce their latency by switching to the zigzag path
s = a — b — t. Consequently, flow f is not a Wardrop equilibrium.

What is the Wardrop equilibrium of this game? Let us consider the flow f* € F in which all players
choose the zigzag path s — a — b — t. In this case, the induced flow on each arc is f(’;’a) = f(*a’b) = f(*b’t) =1,
while f(*a’t) = f(*s)b) = 0. The latencies of the paths under flow f* are:

Cs—)a—)t(f*) = C(s,a)(l) + C(a,t) (O> =1+1=12 (93‘)
Cssbot(f*) = o) (0) +cppy(1) =1 +1=2; (9b)
Cs—ra—bt(f7) = (5,0 (1) + cap) (1) + (1) =140+ 1 =2. (9¢)

We see that all players experience latency of 2 regardless of the path they choose. Thus, no player can reduce
their latency by unilaterally switching paths. Consequently, flow f* € F* is a Wardrop equilibrium. The
social cost of f* is C(f*) = csamsbot(f*) = 2.

Braess’s paradox arises from the observation that the social cost of the Wardrop equilibrium f* is C'(f*) =
2, which is greater than the social cost of the previously considered flow f with C'(f) = 1.5. In other words,
adding the zero-latency arc (a,b) to the network has increased the social cost of the equilibrium from 1.5 to
2!



The price of anarchy. The PoA of a nonatomic routing game quantifies the inefficiency of the Wardrop
equilibria by comparing their social cost to that of an optimal flow f°P* € F, i.e., a flow that minimizes the
game’s social cost. Since in nonatomic routing games with continuous and nondecreasing latency functions
all Wardrop equilibria have the same social cost, the PoA can be expressed in terms of this common value
C* = C(f*) for any f* € F*. Formally, the PoA is defined as

c- cr
minger C(f) — C(fort)’

In the example of Braess’s paradox above, we have C* = C(f*) = 2, and we found a flow f with social cost
C(f) = 1.5; therefore, the PoA is PoA > 2/1.5 = 4/3, indicating that the social cost at equilibrium is at
least 33% higher than the optimal social cost. In fact, the PoA for Braess’s paradox is exactly 4/3 since, by
symmetry, the optimal flow must assign equal flow to the upper and lower paths, leading to the social cost
C(f°rt) = 1.5.

How about the PoA in Pigou’s example in Figure 17 Observe that in Pigou’s example, the latency on
arc e is always less than or equal to the latency on arc eq, i.e., ¢, () = x < 1 = ¢, (x) for all x € [0, 1].
Consequently, in a Wardrop equilibrium, all players choose arc ey, leading to flow f* € F* with induced arc
flow fz =1 and fZ = 0. The social cost of this Wardrop equilibrium is C(f*) = ¢, (1) = 1. To find the
optimal flow, we consider a flow f € F where a fraction x € [0, 1] of the population chooses arc e;, and the
remaining fraction 1 — x chooses arc e;. The induced arc flow is f., = =z and f., = 1 — z, while the social
cost of this flow is

PoA =

(10)

C(fl=z-co(@)+(1—2) ce(l—2)=2-2+(1—2)-1=2>—2+1, Vzecl0,1]. (11)

It follows that the social cost C(f) is minimized at z°P* = 0.5, leading to the optimal social cost C'(f°P*) =
(0.5)2—0.54+1 = 0.75. Therefore, the PoA for Pigou’s example is PoA = 1/0.75 = 4/3. Is this a coincidence,
or is there something special about the value 4/3?

1.4 The price of anarchy bound of 4/3

It turns out that the value 4/3 is not a coincidence. In particular, Pigou’s example in Figure 1 attains
the worst-case PoA among all nonatomic routing games with linear latency functions. This statement can,
in fact, be generalized further. For every subclass of continuous and nondecreasing latency functions, the
worst-case PoA over all nonatomic routing games whose latency functions belong to this subclass is attained
by a Pigou-like routing game, which we formalize below.

Definition 1 (Pigou-like routing game). Given a continuous and nondecreasing function ¢: R>g — R,
the Pigou-like routing game with respect to ¢ is the nonatomic routing game:

Pe= (G {cers ces}) (12)

whose graph G consists of two parallel arcs e; and ey from the source s to the sink ¢, as in Figure 1, with
corresponding latency functions c., = ¢ and c., = ¢(1).

For example, Pigou’s example in Figure 1 is a Pigou-like routing game with respect to the latency function
¢(x) = x, and the nonatomic routing game in the following figure is a Pigou-like routing game with respect
to the latency function c(x) = aP for some fixed degree p > 1.

IP

Figure 3: A Pigou-like routing game with respect to the function c(x) = a? for some fixed degree p > 1.



Before proving the statement, we first compute the PoA of the Pigou-like routing game &, for a general
continuous and nondecreasing function c: R>g — R>o. Consider a flow f € F in &, where a fraction
x € [0, 1] of the population chooses arc e; and the remaining fraction 1 — z chooses arc es. The induced arc
flow is fo, = x and f., =1 — z, with the social cost of this flow given by

Cf)=x cey(@)+ (1 —2) ce,(1—x) =z -c(x)+ (1 —2)-c(1), Vzel0,1]. (13)

Since the latency function ¢ is continuous and nondecreasing, the Wardrop equilibrium f* € F* has all

players choosing arc ei, leading to induced arc flow ff =1 and f5 = 0. The social cost of this Wardrop

equilibrium is C'(f*) = ¢, (1) = ¢(1). Thus, the PoA of the Pigou-like routing game . is

oy (1)
PoA(Z) = minger C(f)  wclo,1]z-c(x)+ (1 —z)-¢(1) (14)

Denote the worst-case PoA over all Pigou-like routing games whose latency functions belong to a subclass C
of continuous and nondecreasing functions by

= Su O = Su max C(l)
oC) = supPoA(Fe) = sup max o 15

For many natural subclasses C of continuous and nondecreasing functions, a(C) can be computed in closed
form. For example, for the subclass of linear functions Cy, = {c: R>o = R>o | ¢(x) = ax + b, a,b> O}, it
can be shown that a(Cy,) = 4/3. More generally, for the subclass of polynomial functions of degree at most
p with nonnegative coefficients, Cpoly,.q = {c: R>o = Rxq | c(z) = >0 a;x%, a; >0,i€{0,... ,p}}7 it can

be shown [3] that

(d+1)Vd+1 d
(d+1)/d+1—-d Ind
It remains to show that these bounds are indeed the worst-case PoA over all nonatomic routing games whose

latency functions belong to the respective subclasses. This is captured by the following theorem due to
Roughgarden [3].

a(Cpoly,a) = (16)

Theorem 2 ([3|). For every subclass C of continuous and nondecreasing functions and every nonatomic
routing game whose latency functions belong to C, the PoA is bounded from above by «(C).

2 Atomic routing games

In the previous section, we considered nonatomic routing games, in which the flow of traffic between a
designated source—sink pair (s,t) in a traffic network is controlled by a continuum of infinitesimal players.
Each player controls an arbitrarily small fraction of the total flow, so their individual routing decision does
not affect the latency on the arcs of the network. Next, we turn our attention to atomic routing games, in
which the players control discrete chunks of flow, or units of traffic.

Our starting point is, once again, an n-player normal-form game ¥ = ([[n]], {a1, as}™, {ui}ie[[n]]), in which
each player i € [n] has two pure strategies ay and ag. This time, however, the payoff functions are not
rescaled by a factor of 1/n; instead, they are given by

uz(s) — {_ Z]:l 181‘:5_7’) lf S; = Qq, (17)

—n, if s; = ago,

for all ¢ € [n] and all strategy profiles s € {a1,a2}"™. We may interpret this game as a routing game on a
network with two parallel arcs e; and es connecting a source node s to a sink node ¢, with respective latency
functions ¢, () = x and ¢, (x) = n, where z is the number of players (the load) choosing arc e;. As before,
choosing arc e; corresponds to strategy «;, and choosing arc ey corresponds to strategy as. In contrast
to the nonatomic case, each player controls a unit of traffic, and therefore their individual routing decision
affects the load = on arc e;. For that reason, the routing game is called atomic.



Formally, an atomic routing game is a tuple (g, {ce}eeg), where G = (V,€) is a directed graph with a
designated source—sink pair (s,¢) € VxV, and each arc e € £ has an associated latency function c.: N — R
that specifies the travel time on e as a function of the load on it. The players’ pure strategies are the set
P of simple source—sink paths in G, and the pure-strategy profiles S = P" is the ensembling thereof across
all players. The load z.(p) on an arc e € £ under a strategy profile p € S is the number of players whose
chosen path includes e; i.e.,

me(p) = Z leep,, (18)

where p; is the path chosen by player i € [n] under strategy profile p, and 1c¢p, is the indicator that equals
1if e € p; and 0 otherwise. Then the latency experienced by a player i € [n] under a strategy profile p is
the accumulated latency over all arcs on their chosen path p;; i.e.,

i(p) =) ce(xe(p)), (19)

ecp;

and, as in nonatomic routing games, the social cost C(p) of a strategy profile p € S is the total latency
experienced by all players; i.e.,

Clp) = ZE (). (20)

Nash equilibria in atomic routing games. A pure-strategy profile p* € S is an NE if no player can
unilaterally deviate to another path and reduce their latency, i.e., for all players i € [n] and all paths p; € P,

Ci(p*) < Li(pis p™s), (21)

where (p;, p*;) is the strategy profile obtained by replacing player ’s path in p* with p;. We use $* C S to
denote the set of all pure-strategy NE in the game.

As atomic routing games are special cases of normal-form games, it follows from Nash’s theorem [4]
that at least one mized-strategy NE exists in such games. Moreover, atomic routing games are strategically
equivalent to potential games [5]. Thus, as potential games admit pure-strategy NE [6], it follows that
atomic routing games admit at least one pure-strategy NE. Therefore, we restrict our attention to the set of
pure-strategy profiles S, and we define the PoA of atomic routing games with respect to strategy profiles in
S.

As an example, consider the simple routing game depicted in Figure 4, which is the atomic counterpart
of Pigou’s example in Figure 1.

Figure 4: An atomic Pigou-like routing game.

One of the NE in this game is the strategy profile p* € §* in which all n players choose arc eq, resulting in
social cost of C(p*) = n?%. When n is even, one optimal strategy profiles is p°P*, in which half of the players

choose one arc, and the remaining players choose the other, resulting in social cost of C'(p°P*) = % -n2.

2.1 The price of anarchy of atomic routing games

In contrast to the NE in nonatomic routing games, which all share a common social cost, the NE in atomic
routing games may have different social costs. In this case, the PoA quantifies the inefficiency of the worst-



case pure-strategy NE relative to the optimal pure-strategy profile p°Pt, i.e., C'(p°P*) = min,es C(p). For-
mally, the PoA in atomic routing games is defined as
maxy-es+ C(p*) _ maxp-es- C(p*)

PoA = — . 29
© min,es C(p) C(pert) (22)

For example, in the atomic Pigou-like routing game depicted in Figure 4, the PoA (for n even) is at least

PA: = =
AT T T

cp) _ ! 23)

Unlike in the nonatomic case, p* is not the only NE in this game. It turns out that there are multiple NE
p*J, for j € [n], in which a single player j chooses arc ey instead of arc ej, while the remaining players
choose arc e;. Since the social cost at each of these NE is C(p*7) = (n —1)24+n=n?—-2n+1+n =
n? —n+1<n? = C(p), it follows that the worst-case NE is indeed p*; therefore the PoA is exactly 4/3
when n is even.

Thus, the atomic counterpart of Pigou’s example has PoA equal to 4/3 (for even n), the same PoA
as Pigou’s nonatomic example. Can we conclude that the PoA of atomic routing games with affine latency
functions is also 4/3? The answer is no. We can construct atomic routing games with affine latency functions
that exhibit PoA of 5/2 [7]. Furthermore, this is the worst-case PoA attainable by atomic routing games
with affine latency functions. Formally, we have the following result due to Christodoulou et al. [7].

Theorem 3 ([7]). In every atomic routing game with affine latency functions, the PoA is at most g

Proof. Let p* € 8* be the worst-case pure-strategy NE, and let p°P* € S be an optimal pure-strategy profile
minimizing the social cost, i.e., C(p°"*) = minyes C(p). Suppose that each arc e € £ is affine, i.e., there
exist ae,be € R>q such that c.(x) = a.x + b for all x € N. We now bound the social cost C(p*) at the NE
p* in terms of the social cost C(p°Pt) at the optimal strategy profile p°Pt.

For convenience, for each e € &, let } = z.(p*) denote the load on arc e € £ under the pure-strategy

NE p*, and let 2%P* = x,(p°P) denote the load on arc e under the optimal pure-strategy profile p°P*.

Bounding the social cost at the NE. Fix an arbitrary player ¢ € [n]. By the definition of NE in
Equation (21), we have £;(p*) < £;(pi,p*;) for all paths p; € P. In particular, let p®* denote the path
chosen by player i in the optimal strategy profile p°Pt; then

Gi(p*) < (™, pry) (24a)

- Z Ce(xe(p?ptvpii)) (24b)
e€p;®*

= Y ce(wePLpm)) + D celwe (™ pr) (24c)
e€pSP Np} e€pPi\p?

= Z co(al) + Z ce(zh +1) (24d)
eEp?ptﬂp; eep?pt\pj

< ) celar+1). (24e)
eEp?m



Thus summing over all players ¢ € [n], we obtain the following bound on the social cost at the NE p*:

D<) Y e+ 1) (25a)

=1 eepopt

= Z( ce(zs+1)) Z1eepopc) (25b)

ecé

= Z ngpt . ce(xz + 1)) (25¢)

ecé

= ac- Pl + 1)+ be - alPt (25d)

ec& ec&
Disentangling the terms xz2P*(z} +1). It can be shown that for all a, 8 € N,
5 2 1o
a(f+1) < o+ §ﬁ . (26)

Thus by applying this inequality to each term zSP*(z* + 1) in the previous bound, we obtain

Zae oOP (2 + 1) + Zb TPt < Zae . (x‘;pt)2 + éZae . (1‘2)2 + Z be - 2oP* (27a)

ecé ecf eEE ecf ecf
< - Z 2P (a, - 2P + b,) Z xs - (ae - x)) (27b)
e€£ eES
< gz:xgpt(ae P+ b)) + gng (ae - x5 +be) (27¢)
eef ec&
== Z xoPte, (zOPY) Z xs (27d)
eEE eEE

where in second inequality we used the fact that > e - 29" > 0, and in the third inequality we used the

fact that b, > 0 for all e € £.

665

Bounding the PoA. Observe that for all pure-strategy profiles p € S, we have

— i&(p) = z": D ce(ze(p) = Z((ce ze(p ) Zleep) > 2e(p) - ce(we(p)- (28)

i=1 e€p; ec& ec
Thus by applying this observation to the previous bound, we obtain
5 1
- ZxoPt ae - 2"+ be) Zx (Ge - xf +be) = 3C’(p°pt) + gC(p*). (29)
eEE 568

Putting everything together, we have shown that

* 5 O 1 * * 5 (o)
Cr") < 30"+ 3C0") = CW") < 5-C™). (30)
Thus, by the definition of PoA, we have
Cwr) _ 300 _5
PoA = < < - 31
A=) = o) <2 oy
O

Together with the example of an atomic routing game with affine latency functions that exhibits PoA
5/2, we conclude that the bound in Theorem 3 is tight. Thus, whereas in the nonatomic case the worst-case
PoA is 4/3, in the atomic case the worst-case PoA with affine latency functions is 5/2.

10



A List of abbreviations

NE Nash Equilibrium 1, 3, 4, 8-10
PoA Price of Anarchy 1, 3, 5-10
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B Index

atomic routing game 1, 7-10
flow 1, 3-7
latency function 1, 3-10
3-8
load 79
mixed strategy 8

nonatomic routing game 1, 3-10, see also Pigou-like routing game
normal-form game 3,7, 8

Pigou-like routing game 1, 6-9

potential game 8
pure strategy 3,7,8
8-10
routing game 1, 7, see also nonatomic routing game, Pigou-like routing game

& atomic routing game

social cost 4-10

strategically equivalent 3, 8

strategy see also pure strategy & mixed strategy
3,79

Wardrop equilibrium 1, 3-7
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