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Abstract

These notes introduce the price of anarchy (PoA) for routing games as a metric of inefficiency. We
first treat the nonatomic model, defining flows, latency functions, and Wardrop equilibria, and the PoA
for nonatomic routing games. Pigou’s example gives a lower bound of 4/3 on the PoA for affine latency
functions, and we show this is tight via a reduction to Pigou-like instances. We then introduce atomic
routing games with unit-demand players, define Nash equilibria (NE) and the PoA for atomic routing
games, and present an affine example yielding a lower bound of 5/2. Finally, we prove that this bound
is tight for the entire class of affine latency functions.
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1 Nonatomic routing games
Recall that a Nash equilibrium (NE) is a stable state of a game in which no player can improve their payoff
by unilaterally deviating. However, a game may admit multiple NE, raising the question of how to assess
the quality of these equilibria. The price of anarchy (PoA) addresses this by quantifying the inefficiency of
an NE relative to a suitably defined optimal outcome.

To make these ideas concrete, we begin our discussion in the setting of a nonatomic routing game, in
which the analogue of an NE is the Wardrop equilibrium. Under standard continuity and monotonicity
assumptions on the cost functions, Wardrop equilibria exist; moreover, all Wardrop equilibria induce the
same aggregate cost, and thus the equilibrium quality is unambiguous. Finally, in a nonatomic routing
game, no-regret learning dynamics drive play, on average, toward the set of Wardrop equilibria [1], which
further motivates using the PoA to measure the inefficiency of outcomes arising from a learning process.

1.1 From normal-form games to nonatomic routing games
Consider an n-player normal-form game G =

(
JnK, {α1, α2}n, {ui}i∈JnK

)
in which each player i ∈ JnK has two

pure strategies, α1 and α2, and the payoff functions are:

ui(s) =

{
− 1

n

∑n
j=1 1si=sj , if si = α1,

−1, if si = α2,
(1)

for all i ∈ JnK and all strategy profiles s ∈ {α1, α2}n. In words, if player i chooses α1, their payoff is the
negative of the fraction of players (including player i) who also choose α1. If player i chooses α2, their payoff
is simply −1.

Let x ∈ [0, 1] be the fraction of players who choose α1 in a strategy profile s. Then the payoff of any
player choosing α1 is −x, while the payoff of any player choosing α2 is −1. Since payoffs depend only on
the fraction x and not on the identities of the players, this description continues to make sense as n grows.
In the limit n → ∞, we obtain a nonatomic routing game with a continuum of players, i.e., a population,
each choosing between two routes, α1 and α2 with latencies (costs) x and 1, respectively. You may think of
this limit as a game in which each individual player has negligible influence on the overall outcome. More
generally, a nonatomic routing game is given by a tuple

(
G, {ce}e∈E

)
, where G = (V, E) is a directed graph

with a designated source–sink pair (s, t) ∈ V × V, and each arc e ∈ E has an associated latency function
ce : R≥0 → R≥0 that specifies the travel time on e as a function of the fraction of the population (the flow)
on e. Throughout, we assume that all latency functions are continuous, nonnegative, and nondecreasing.

As an example, consider the simple routing game depicted in Figure 1, known as Pigou’s example.

s t

ce1 (x) = x

ce2 (x) = 1

Figure 1: Pigou’s example of a nonatomic routing game.

There are two parallel arcs from the source s to the sink t. The latency function on the upper arc e1 is
ce1(x) = x, while the latency function on the lower arc e2 is ce2(x) = 1. This game is strategically equivalent
to the limit of the normal-form game in (1) as n → ∞, in which choosing arc e1 corresponds to strategy α1,
and choosing arc e2 corresponds to strategy α2.

Flows. The analogue of a pure strategy in a nonatomic routing game is a flow. Let P ∈ 2E be the set of
all simple paths from the source s to the sink t in the graph G. A flow is a |P|-dimensional vector (fp)p∈P
with fp ≥ 0 for all p ∈ P and

∑
p∈P fp = 1; it assigns to each path p a value fp, representing the fraction of

the population that chooses path p. We denote the set of all feasible flows by F .
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Given a flow f ∈ F , we may induce a flow on the arcs of the graph. That is, for each arc e ∈ E , we may
compute the fraction of the population that uses arc e as part of their chosen path. Formally, the induced
flow is given by

fe =
∑
p∋e

fp, ∀e ∈ E . (2)

As an example, consider the nonatomic routing game in Figure 2, known as Braess’s paradox.

s

a

b

t

x 1

1 x

0

Figure 2: Braess’s paradox.

In this game, there are three simple paths from s to t: the upper path s → a → t, the lower path s → b → t,
and the zigzag path s → a → b → t. Suppose that the flow f is such that 50% of the population chooses
the upper path s → a → t, and 50% chooses the lower path s → b → t. Then the induced flow on each arc
is f(s,a) = f(a,t) = f(s,b) = f(b,t) = 0.5, while f(a,b) = 0. We will return to this example later to see why it is
paradoxical.

Path latency and social cost. The latency experienced by players choosing path p ∈ P under flow f ∈ F
is the accumulated latency over all arcs e on path p, i.e.,

cp(f) =
∑
e∈p

ce(fe), ∀p ∈ P. (3)

In the example above, the latency experienced by players choosing the upper path s → a → t is cs→a→t(f) =
c(s,a)(0.5) + c(a,t)(0.5) = 0.5 + 1 = 1.5, while the latency experienced by players choosing the lower path
s → b → t is cs→b→t(f) = c(s,b)(0.5) + c(b,t)(0.5) = 1 + 0.5 = 1.5.

Since each infinitesimal player experiences only the latency of their chosen path, the average latency is a
natural measure of the overall performance of a flow. We define the social cost C(f) of a flow f to be this
average latency. Formally,

C(f) =
∑
p∈P

fp · cp(f) ∀f ∈ F . (4)

In the example above, the social cost of flow f is C(f) = 0.5 · 1.5 + 0.5 · 1.5 = 1.5.

Simplifications. To keep the notation compact, the definition of a nonatomic routing game above assumes
a single source–sink pair (s, t) and a total demand (population) of 1 unit of flow to be routed from s to t.
The normalization to 1 unit of flow is without loss of generality, since we can always rescale the latency
functions accordingly. If there are multiple source–sink pairs, we can view of the game as consisting of
multiple populations, each with its own source–sink pair and demand. All results presented in these notes
extend in a straightforward way to this more general setting.

1.2 Wardrop equilibria.
A Wardrop equilibrium captures the idea that no player can reduce their latency by unilaterally changing
their route from s to t. This is the continuum analogue of an NE, in which no infinitesimal player can reduce
their latency by unilaterally deviating. Formally, a flow f⋆ ∈ F is a Wardrop equilibrium if, for all paths
p ∈ P with positive flow f⋆

p > 0, the latency cp(f
⋆) is minimal; i.e.,

cp(f
⋆) ≤ cp′(f⋆), ∀p′ ∈ P. (5)
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In other words, all the paths that are used in a Wardrop equilibrium have the minimal possible latency. We
let F⋆ ⊆ F denote the set of all Wardrop equilibria.

By definition, it follows that if a flow f⋆ ∈ F⋆ is a Wardrop equilibrium, then

cp(f
⋆) = cp′(f⋆), ∀p, p′ ∈ P with f⋆

p , f
⋆
p′ > 0. (6)

Indeed, if there were two paths p, p′ ∈ P with positive flow such that cp(f
⋆) < cp′(f⋆), then players using

path p′ could reduce their latency by switching to path p, contradicting (5). Consequently, in a Wardrop
equilibrium, all players experience the same latency regardless of the path they choose. This implies that
the social cost at a Wardrop equilibrium is simply the common latency experienced by all players. Let c(f⋆)
denote the common latency; the social cost at f⋆ is

C(f⋆) =
∑
p∈P

f⋆
p · cp(f⋆) = c(f⋆) ·

∑
p∈P

f⋆
p = c(f⋆) · 1 = c(f⋆). (7)

In the next section, we will compare the social cost of Wardrop equilibria to that of an optimal flow,
leading to the notion of the PoA in nonatomic routing games. First, there are a few nontrivial facts about
the Wardrop equilibria for nonatomic routing games with continuous and nondecreasing latency functions
that are worth mentioning before we define the PoA in nonatomic routing games. In particular, the Wardrop
equilibria are the solutions to a convex optimization problem over a compact convex set [2]. Consequently,
a Wardrop equilibrium always exists in such games. Furthermore, all Wardrop equilibria have the same
social cost [2], and therefore the quality of a Wardrop equilibrium is unambiguous: it is the social cost of
any a Wardrop equilibrium.

1.3 The price of anarchy of nonatomic routing games
Let us take another look at Braess’s paradox in Figure 2. Previously, we considered the flow f in which 50%
of the population chooses the upper path s → a → t and 50% chooses the lower path s → b → t. We found
that the induced flow on each arc is f(s,a) = f(a,t) = f(s,b) = f(b,t) = 0.5, while f(a,b) = 0, and that the social
cost of this flow is C(f) = 1.5. Is this flow a Wardrop equilibrium? To check, we compute the latencies of
each path under flow f :

cs→a→t(f) = c(s,a)(0.5) + c(a,t)(0.5) = 0.5 + 1 = 1.5; (8a)
cs→b→t(f) = c(s,b)(0.5) + c(b,t)(0.5) = 1 + 0.5 = 1.5; (8b)

cs→a→b→t(f) = c(s,a)(0.5) + c(a,b)(0) + c(b,t)(0.5) = 0.5 + 0 + 0.5 = 1. (8c)

We see that players using the zigzag path s → a → b → t experience latency of 1, which is less than
the latency of 1.5 experienced by players using the other two paths. Thus, players using either the upper
path s → a → t or the lower path s → b → t could reduce their latency by switching to the zigzag path
s → a → b → t. Consequently, flow f is not a Wardrop equilibrium.

What is the Wardrop equilibrium of this game? Let us consider the flow f⋆ ∈ F in which all players
choose the zigzag path s → a → b → t. In this case, the induced flow on each arc is f⋆

(s,a) = f⋆
(a,b) = f⋆

(b,t) = 1,
while f⋆

(a,t) = f⋆
(s,b) = 0. The latencies of the paths under flow f⋆ are:

cs→a→t(f
⋆) = c(s,a)(1) + c(a,t)(0) = 1 + 1 = 2; (9a)

cs→b→t(f
⋆) = c(s,b)(0) + c(b,t)(1) = 1 + 1 = 2; (9b)

cs→a→b→t(f
⋆) = c(s,a)(1) + c(a,b)(1) + c(b,t)(1) = 1 + 0 + 1 = 2. (9c)

We see that all players experience latency of 2 regardless of the path they choose. Thus, no player can reduce
their latency by unilaterally switching paths. Consequently, flow f⋆ ∈ F⋆ is a Wardrop equilibrium. The
social cost of f⋆ is C(f⋆) = cs→a→b→t(f

⋆) = 2.
Braess’s paradox arises from the observation that the social cost of the Wardrop equilibrium f⋆ is C(f⋆) =

2, which is greater than the social cost of the previously considered flow f with C(f) = 1.5. In other words,
adding the zero-latency arc (a, b) to the network has increased the social cost of the equilibrium from 1.5 to
2!
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The price of anarchy. The PoA of a nonatomic routing game quantifies the inefficiency of the Wardrop
equilibria by comparing their social cost to that of an optimal flow fopt ∈ F , i.e., a flow that minimizes the
game’s social cost. Since in nonatomic routing games with continuous and nondecreasing latency functions
all Wardrop equilibria have the same social cost, the PoA can be expressed in terms of this common value
C⋆ def

= C(f⋆) for any f⋆ ∈ F⋆. Formally, the PoA is defined as

PoA =
C⋆

minf∈F C(f)
=

C⋆

C(fopt)
. (10)

In the example of Braess’s paradox above, we have C⋆ = C(f⋆) = 2, and we found a flow f with social cost
C(f) = 1.5; therefore, the PoA is PoA ≥ 2/1.5 = 4/3, indicating that the social cost at equilibrium is at
least 33% higher than the optimal social cost. In fact, the PoA for Braess’s paradox is exactly 4/3 since, by
symmetry, the optimal flow must assign equal flow to the upper and lower paths, leading to the social cost
C(fopt) = 1.5.

How about the PoA in Pigou’s example in Figure 1? Observe that in Pigou’s example, the latency on
arc e1 is always less than or equal to the latency on arc e2, i.e., ce1(x) = x ≤ 1 = ce2(x) for all x ∈ [0, 1].
Consequently, in a Wardrop equilibrium, all players choose arc e1, leading to flow f⋆ ∈ F⋆ with induced arc
flow f⋆

e1 = 1 and f⋆
e2 = 0. The social cost of this Wardrop equilibrium is C(f⋆) = ce1(1) = 1. To find the

optimal flow, we consider a flow f ∈ F where a fraction x ∈ [0, 1] of the population chooses arc e1, and the
remaining fraction 1 − x chooses arc e2. The induced arc flow is fe1 = x and fe2 = 1 − x, while the social
cost of this flow is

C(f) = x · ce1(x) + (1− x) · ce2(1− x) = x · x+ (1− x) · 1 = x2 − x+ 1, ∀x ∈ [0, 1]. (11)

It follows that the social cost C(f) is minimized at xopt = 0.5, leading to the optimal social cost C(fopt) =
(0.5)2−0.5+1 = 0.75. Therefore, the PoA for Pigou’s example is PoA = 1/0.75 = 4/3. Is this a coincidence,
or is there something special about the value 4/3?

1.4 The price of anarchy bound of 4/3

It turns out that the value 4/3 is not a coincidence. In particular, Pigou’s example in Figure 1 attains
the worst-case PoA among all nonatomic routing games with linear latency functions. This statement can,
in fact, be generalized further. For every subclass of continuous and nondecreasing latency functions, the
worst-case PoA over all nonatomic routing games whose latency functions belong to this subclass is attained
by a Pigou-like routing game, which we formalize below.

Definition 1 (Pigou-like routing game). Given a continuous and nondecreasing function c : R≥0 → R≥0,
the Pigou-like routing game with respect to c is the nonatomic routing game:

Pc =
(
G, {ce1 , ce2}

)
(12)

whose graph G consists of two parallel arcs e1 and e2 from the source s to the sink t, as in Figure 1, with
corresponding latency functions ce1 = c and ce2 ≡ c(1).

For example, Pigou’s example in Figure 1 is a Pigou-like routing game with respect to the latency function
c(x) = x, and the nonatomic routing game in the following figure is a Pigou-like routing game with respect
to the latency function c(x) = xp for some fixed degree p > 1.

s t

xp

1

Figure 3: A Pigou-like routing game with respect to the function c(x) = xp for some fixed degree p > 1.
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Before proving the statement, we first compute the PoA of the Pigou-like routing game Pc for a general
continuous and nondecreasing function c : R≥0 → R≥0. Consider a flow f ∈ F in Pc where a fraction
x ∈ [0, 1] of the population chooses arc e1 and the remaining fraction 1− x chooses arc e2. The induced arc
flow is fe1 = x and fe2 = 1− x, with the social cost of this flow given by

C(f) = x · ce1(x) + (1− x) · ce2(1− x) = x · c(x) + (1− x) · c(1), ∀x ∈ [0, 1]. (13)

Since the latency function c is continuous and nondecreasing, the Wardrop equilibrium f⋆ ∈ F⋆ has all
players choosing arc e1, leading to induced arc flow f⋆

e1 = 1 and f⋆
e2 = 0. The social cost of this Wardrop

equilibrium is C(f⋆) = ce1(1) = c(1). Thus, the PoA of the Pigou-like routing game Pc is

PoA(Pc) =
C(f⋆)

minf∈F C(f)
= max

x∈[0, 1]

c(1)

x · c(x) + (1− x) · c(1)
. (14)

Denote the worst-case PoA over all Pigou-like routing games whose latency functions belong to a subclass C
of continuous and nondecreasing functions by

α(C) = sup
c∈C

PoA(Pc) = sup
c∈C

max
x∈[0, 1]

c(1)

x · c(x) + (1− x) · c(1)
. (15)

For many natural subclasses C of continuous and nondecreasing functions, α(C) can be computed in closed
form. For example, for the subclass of linear functions Clin =

{
c : R≥0 → R≥0 | c(x) = ax + b, a, b ≥ 0

}
, it

can be shown that α(Clin) = 4/3. More generally, for the subclass of polynomial functions of degree at most
p with nonnegative coefficients, Cpoly,d =

{
c : R≥0 → R≥0 | c(x) =

∑p
i=0 aix

i, ai ≥ 0, i ∈ {0, . . . , p}
}
, it can

be shown [3] that

α(Cpoly,d) =
(d+ 1) d

√
d+ 1

(d+ 1) d
√
d+ 1− d

≈ d

ln d
. (16)

It remains to show that these bounds are indeed the worst-case PoA over all nonatomic routing games whose
latency functions belong to the respective subclasses. This is captured by the following theorem due to
Roughgarden [3].

Theorem 2 ([3]). For every subclass C of continuous and nondecreasing functions and every nonatomic
routing game whose latency functions belong to C, the PoA is bounded from above by α(C).

2 Atomic routing games
In the previous section, we considered nonatomic routing games, in which the flow of traffic between a
designated source–sink pair (s, t) in a traffic network is controlled by a continuum of infinitesimal players.
Each player controls an arbitrarily small fraction of the total flow, so their individual routing decision does
not affect the latency on the arcs of the network. Next, we turn our attention to atomic routing games, in
which the players control discrete chunks of flow, or units of traffic.

Our starting point is, once again, an n-player normal-form game G =
(
JnK, {α1, α2}n, {ui}i∈JnK

)
, in which

each player i ∈ JnK has two pure strategies α1 and α2. This time, however, the payoff functions are not
rescaled by a factor of 1/n; instead, they are given by

ui(s) =

{
−
∑n

j=1 1si=sj , if si = α1,

−n, if si = α2,
(17)

for all i ∈ JnK and all strategy profiles s ∈ {α1, α2}n. We may interpret this game as a routing game on a
network with two parallel arcs e1 and e2 connecting a source node s to a sink node t, with respective latency
functions ce1(x) = x and ce2(x) = n, where x is the number of players (the load) choosing arc e1. As before,
choosing arc e1 corresponds to strategy α1, and choosing arc e2 corresponds to strategy α2. In contrast
to the nonatomic case, each player controls a unit of traffic, and therefore their individual routing decision
affects the load x on arc e1. For that reason, the routing game is called atomic.
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Formally, an atomic routing game is a tuple
(
G, {ce}e∈E

)
, where G = (V, E) is a directed graph with a

designated source–sink pair (s, t) ∈ V×V, and each arc e ∈ E has an associated latency function ce : N → R≥0

that specifies the travel time on e as a function of the load on it. The players’ pure strategies are the set
P of simple source–sink paths in G, and the pure-strategy profiles S = Pn is the ensembling thereof across
all players. The load xe(p) on an arc e ∈ E under a strategy profile p ∈ S is the number of players whose
chosen path includes e; i.e.,

xe(p) =

n∑
i=1

1e∈pi , (18)

where pi is the path chosen by player i ∈ JnK under strategy profile p, and 1e∈pi
is the indicator that equals

1 if e ∈ pi and 0 otherwise. Then the latency experienced by a player i ∈ JnK under a strategy profile p is
the accumulated latency over all arcs on their chosen path pi; i.e.,

ℓi(p) =
∑
e∈pi

ce
(
xe(p)

)
, (19)

and, as in nonatomic routing games, the social cost C(p) of a strategy profile p ∈ S is the total latency
experienced by all players; i.e.,

C(p) =

n∑
i=1

ℓi(p). (20)

Nash equilibria in atomic routing games. A pure-strategy profile p⋆ ∈ S is an NE if no player can
unilaterally deviate to another path and reduce their latency, i.e., for all players i ∈ JnK and all paths pi ∈ P,

ℓi(p
⋆) ≤ ℓi(pi, p

⋆
−i), (21)

where (pi, p
⋆
−i) is the strategy profile obtained by replacing player i’s path in p⋆ with pi. We use S⋆ ⊆ S to

denote the set of all pure-strategy NE in the game.
As atomic routing games are special cases of normal-form games, it follows from Nash’s theorem [4]

that at least one mixed-strategy NE exists in such games. Moreover, atomic routing games are strategically
equivalent to potential games [5]. Thus, as potential games admit pure-strategy NE [6], it follows that
atomic routing games admit at least one pure-strategy NE. Therefore, we restrict our attention to the set of
pure-strategy profiles S, and we define the PoA of atomic routing games with respect to strategy profiles in
S.

As an example, consider the simple routing game depicted in Figure 4, which is the atomic counterpart
of Pigou’s example in Figure 1.

s t

x

n

Figure 4: An atomic Pigou-like routing game.

One of the NE in this game is the strategy profile p⋆ ∈ S⋆ in which all n players choose arc e1, resulting in
social cost of C(p⋆) = n2. When n is even, one optimal strategy profiles is popt, in which half of the players
choose one arc, and the remaining players choose the other, resulting in social cost of C(popt) = 3

4 · n2.

2.1 The price of anarchy of atomic routing games
In contrast to the NE in nonatomic routing games, which all share a common social cost, the NE in atomic
routing games may have different social costs. In this case, the PoA quantifies the inefficiency of the worst-
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case pure-strategy NE relative to the optimal pure-strategy profile popt, i.e., C(popt) = minp∈S C(p). For-
mally, the PoA in atomic routing games is defined as

PoA =
maxp⋆∈S⋆ C(p⋆)

minp∈S C(p)
=

maxp⋆∈S⋆ C(p⋆)

C(popt)
. (22)

For example, in the atomic Pigou-like routing game depicted in Figure 4, the PoA (for n even) is at least

PoA =
C(p⋆)

C(popt)
=

n2

3
4 · n2

=
4

3
. (23)

Unlike in the nonatomic case, p⋆ is not the only NE in this game. It turns out that there are multiple NE
p⋆,j , for j ∈ JnK, in which a single player j chooses arc e2 instead of arc e1, while the remaining players
choose arc e1. Since the social cost at each of these NE is C(p⋆,j) = (n − 1)2 + n = n2 − 2n + 1 + n =
n2 − n + 1 ≤ n2 = C(p⋆), it follows that the worst-case NE is indeed p⋆; therefore the PoA is exactly 4/3
when n is even.

Thus, the atomic counterpart of Pigou’s example has PoA equal to 4/3 (for even n), the same PoA
as Pigou’s nonatomic example. Can we conclude that the PoA of atomic routing games with affine latency
functions is also 4/3? The answer is no. We can construct atomic routing games with affine latency functions
that exhibit PoA of 5/2 [7]. Furthermore, this is the worst-case PoA attainable by atomic routing games
with affine latency functions. Formally, we have the following result due to Christodoulou et al. [7].

Theorem 3 ([7]). In every atomic routing game with affine latency functions, the PoA is at most 5
2 .

Proof. Let p⋆ ∈ S⋆ be the worst-case pure-strategy NE, and let popt ∈ S be an optimal pure-strategy profile
minimizing the social cost, i.e., C(popt) = minp∈S C(p). Suppose that each arc e ∈ E is affine, i.e., there
exist ae, be ∈ R≥0 such that ce(x) = aex+ be for all x ∈ N. We now bound the social cost C(p⋆) at the NE
p⋆ in terms of the social cost C(popt) at the optimal strategy profile popt.

For convenience, for each e ∈ E , let x⋆
e = xe(p

⋆) denote the load on arc e ∈ E under the pure-strategy
NE p⋆, and let xopt

e = xe(p
opt) denote the load on arc e under the optimal pure-strategy profile popt.

Bounding the social cost at the NE. Fix an arbitrary player i ∈ JnK. By the definition of NE in
Equation (21), we have ℓi(p

⋆) ≤ ℓi(pi, p
⋆
−i) for all paths pi ∈ P. In particular, let popt

i denote the path
chosen by player i in the optimal strategy profile popt; then

ℓi(p
⋆) ≤ ℓi(p

opt
i , p⋆−i) (24a)

=
∑

e∈popt
i

ce
(
xe(p

opt
i , p⋆−i)

)
(24b)

=
∑

e∈popt
i ∩p⋆

i

ce
(
xe(p

opt
i , p⋆−i)

)
+

∑
e∈popt

i \p⋆
i

ce
(
xe(p

opt
i , p⋆−i)

)
(24c)

=
∑

e∈popt
i ∩p⋆

i

ce(x
⋆
e) +

∑
e∈popt

i \p⋆
i

ce(x
⋆
e + 1) (24d)

≤
∑

e∈popt
i

ce(x
⋆
e + 1). (24e)
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Thus summing over all players i ∈ JnK, we obtain the following bound on the social cost at the NE p⋆:

C(p⋆) ≤
n∑

i=1

∑
e∈popt

i

ce(x
⋆
e + 1) (25a)

=
∑
e∈E

((
ce(x

⋆
e + 1)

)
·

n∑
i=1

1e∈popt
i

)
(25b)

=
∑
e∈E

xopt
e ·

(
ce(x

⋆
e + 1)

)
(25c)

=
∑
e∈E

ae · xopt
e (x⋆

e + 1) +
∑
e∈E

be · xopt
e . (25d)

Disentangling the terms xopt
e (x⋆

e + 1). It can be shown that for all α, β ∈ N,

α(β + 1) ≤ 5

3
α2 +

1

3
β2. (26)

Thus by applying this inequality to each term xopt
e (x⋆

e + 1) in the previous bound, we obtain∑
e∈E

ae · xopt
e (x⋆

e + 1) +
∑
e∈E

be · xopt
e ≤ 5

3

∑
e∈E

ae · (xopt
e )2 +

1

3

∑
e∈E

ae · (x⋆
e)

2 +
∑
e∈E

be · xopt
e (27a)

≤ 5

3

∑
e∈E

xopt
e (ae · xopt

e + be) +
1

3

∑
e∈E

x⋆
e · (ae · x⋆

e) (27b)

≤ 5

3

∑
e∈E

xopt
e (ae · xopt

e + be) +
1

3

∑
e∈E

x⋆
e · (ae · x⋆

e + be) (27c)

=
5

3

∑
e∈E

xopt
e ce(x

opt
e ) +

1

3

∑
e∈E

x⋆
e · ce(x⋆

e), (27d)

where in second inequality we used the fact that
∑

e∈E be · xopt
e ≥ 0, and in the third inequality we used the

fact that be ≥ 0 for all e ∈ E .

Bounding the PoA. Observe that for all pure-strategy profiles p ∈ S, we have

C(p) =

n∑
i=1

ℓi(p) =

n∑
i=1

∑
e∈pi

ce
(
xe(p)

)
=

∑
e∈E

((
ce
(
xe(p)

))
·

n∑
i=1

1e∈pi

)
=

∑
e∈E

xe(p) · ce(xe(p)). (28)

Thus by applying this observation to the previous bound, we obtain

5

3

∑
e∈E

xopt
e

(
ae · xopt

e + be
)
+

1

3

∑
e∈E

x⋆
e · (ae · x⋆

e + be) =
5

3
C(popt) +

1

3
C(p⋆). (29)

Putting everything together, we have shown that

C(p⋆) ≤ 5

3
C(popt) +

1

3
C(p⋆) =⇒ C(p⋆) ≤ 5

2
· C(popt). (30)

Thus, by the definition of PoA, we have

PoA =
C(p⋆)

C(popt)
≤

5
2C(popt)

C(popt)
≤ 5

2
. (31)

Together with the example of an atomic routing game with affine latency functions that exhibits PoA
5/2, we conclude that the bound in Theorem 3 is tight. Thus, whereas in the nonatomic case the worst-case
PoA is 4/3, in the atomic case the worst-case PoA with affine latency functions is 5/2.
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A List of abbreviations

NE Nash Equilibrium 1, 3, 4, 8–10

PoA Price of Anarchy 1, 3, 5–10
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B Index

atomic routing game 1, 7–10

flow 1, 3–7

latency function 1, 3–10

3–8

load 7–9

mixed strategy 8

nonatomic routing game 1, 3–10, see also Pigou-like routing game

normal-form game 3, 7, 8

Pigou-like routing game 1, 6–9

potential game 8

pure strategy 3, 7, 8

8–10

routing game 1, 7, see also nonatomic routing game, Pigou-like routing game
& atomic routing game

social cost 4–10

strategically equivalent 3, 8

strategy see also pure strategy & mixed strategy

3, 7–9

Wardrop equilibrium 1, 3–7
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