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Abstract

These notes study learning in extensive form games (EFGs) through the counterfactual regret mini-
mization (CFR) algorithm. We define reach probabilities and counterfactual utility at information sets.
Building on these notions, we introduce counterfactual regret and present the CFR update rule, in which
behavioral strategies are adjusted via regret matching at each information set. We then state the CFR
decomposition theorem, which shows that controlling local counterfactual regret at every information
set is sufficient to bound a player’s regret in the game and implies convergence to approximate Nash
equilibria (NE) in EFGs with perfect recall [1].
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1 Counterfactual regret minimization

Learning in extensive form games (EFGs) often employs the counterfactual regret minimization (CFR)
algorithm [1]. CFR is an iterative method for computing approximate Nash equilibria (NE) in EFGs with
imperfect information. The key idea of CFR is to minimize a player’s regret for not choosing alternative
actions, where each action is evaluated based on its counterfactual utility at the information sets where it is
available.

1.1 Preliminaries

Summary of EFG foundations. Recall that an EFG is a game tree. The internal nodes, or histories, of
the game tree are decision points for an acting player, and the outgoing arcs represent the possible actions the
acting player can take at each history. Information sets group together histories that are indistinguishable
to the player due to imperfect information. A terminal history corresponds to a complete sequence of actions
leading to the end of the game, with associated payoffs for each player. Although EFGs may include chance
nodes to model stochastic events, for simplicity we focus on game trees without chance nodes. All results
in these notes extend to EFGs with chance nodes by treating nature as an additional player with fixed
distributions over its histories.

Formally, for an n-player EFG with perfect recall (and no chance nodes), we use H to denote the set of
histories. For each player i € [n], we use J; C 2" to denote the set of information sets of player 4, and for
each information set Z € J; we use Az to denote the set of actions available to player i at Z. We use Z C H
to denote the set of terminal histories, and for each terminal history z € Z, we write u;(z) for the payoff
of player i at z. To ease the notation, we assume that the action sets of each player’s information sets are
disjoint; that is, Az N Az =0 for all i € [n] and Z, 7’ € J; with Z # 7.

Summary of EFG strategy representations. In EFGs, strategies have both normal-form representa-
tion and behavioral-form representation. In the normal-form representation, strategies correspond to mixed
strategies of an induced normal-form game; thus, by Nash’s theorem [2]|, a mixed-strategy NE always exists
in EFGs. Nonetheless, the normal-form representation is often impractical due to the exponential growth of
the pure-strategy space with respect to the size of the game tree.

In contrast, in the behavioral-form representation, strategies are behavioral strategies, assigning proba-
bilities to actions at each information set. In other words, a behavioral strategy of each player is a product
distribution over the player’s available actions at each information set. Kuhn’s theorem [3] establishes the
equivalence between mixed strategies and behavioral strategies in EFGs with perfect recall, i.e., EFGs in
which each player remembers their past actions. Hence, a behavioral-strategy NE also exists in such games.

For each player i € [n], we use

B = T AAr) M)

IeJ;

to denote the set of all behavioral strategies of player i, where A(Az) is the probability simplex over the
action set Az at information set Z. Moreover, we use

B=]]8: (2)

to denote the set of all behavioral-strategy profiles. Finally, for each player i € [n], a behavioral strategy
b; € B;, and action « € Az with Z € J;, we write b;(a) to denote the probability assigned by b; to action «
at information set Z. This is well-defined because we assume that the action sets of each player’s information
sets are disjoint.

1.2 Action sequences and perfect recall

For each EFG and each history h € H in the game tree of the EFG, there exists a unique sequence of actions
taken by the players to reach h from the root of the game tree (since the game tree is a tree). For each



history h € H and each player i € [n], we use
q;z = (qz,h ceey qi’mi)a (3)

to denote this unique sequence of actions taken by player i to reach the history h, where m{ denotes the
length of this sequence. Furthermore, we use

p’;L = (p;;L,l? s 7p27mz) (4)

to denote the induced sequence of histories, where pfl,k denotes the history at which action q,ﬁb’k was taken.

Finally, we use ] ,
Tin ={Z € Ji | 3k € [m},] such that p}, , € T} (5)

to denote the set of information sets of player 7 that are visited in the history sequence p}b.
As an example, consider the game tree in Figure 1.

Figure 1: A simple game tree. The path from the root history h; to the leftmost terminal history z; is
highlighted in

Consider the leftmost terminal history z; with payoffs (3,2), which is highlighted in . The action
sequence of Player 1 (P1) to reach z; is ¢, = (X), with induced history sequence p. = (hy), where hy is
the root history, while the action sequence of Player 2 (P2) to reach z; is ¢2, = (A), with induced history
sequence p2, = (hy). Finally, the set of information sets visited by Player 1 in pl is J1,., = {Z1}, while the
set of information sets visited by Player 2 in pzl is Jo,. = {Z2}.

Perfect recall. Formally, an EFG has perfect recall if, for each player i € [n], each information set Z € 7T,
and each pair of histories h, b’ € Z, we have ¢}, = ¢, |3]. For example, the game tree in Figure 1 has perfect
recall. Indeed, Player 1 has a single information set Z; = {hq1}, so the condition is trivially satisfied for
Player 1, while Player 2 has a single information set Zo = {hqo, h3}, and at both histories hy and hs, Player 2
has taken no previous actions, so their past action sequences coincide.

In an EFG with perfect recall, for each player i € [n], each history h € H, and each information set
Z € TJin, we can unambiguously define the unique history

pﬁz,z €l (6)
visited by player ¢ in the history sequence pz. Indeed, p}ll is well-defined due to the following proposition.

Proposition 1. For an EFG with perfect recall, the history sequence p' used by each player i to reach
a history h cannot contain two different histories from the same information set; i.e., if pj, . pﬁ'%k/ €T for
someT € J;, then k = k'.

Proof. Suppose that, for some player i € [n], some history h € H, and some k, k' € [m}], there exists
T € J; such that pﬁl’k, pﬁl,k, € T and k < k’. Thus, by the definition of perfect recall, we have that the action
sequences to reach pﬁ , and pﬁ . are the same. However, since p} is induced by the unigue action sequence
¢} to reach history h, and k < k', it follows that the player’s action sequence to reach pﬁl’k is a subsequence
of the action sequence to reach pﬁl’ w» Which contradicts the definition of perfect recall. O



As an example, consider the game tree in Figure 1 and the sequence of histories pgl = (hg) for Player 2 to
reach the leftmost terminal history z;. Since ho € Zs, we have pihzz = ho.

1.3 Counterfactual utilities and counterfactual regret

Before describing the CFR algorithm, we first introduce the notions of counterfactual utilities and counter-
factual regret, which are fundamental to the operation of CFR.

Reach probabilities. The reach probability quantifies the likelihood of reaching a specific history when
the players follow a given behavioral-strategy profile. Formally, for a player i € [n], a behavioral-strategy
profile b € B, and a history h € H, we define the reach probability of player i reaching h under b as

7w} (h) = H bi (qh 1)- (7)

Furthermore, we define the reach probability of all players other than player i reaching h under b as

2 () = T[40 = TT T b (). ®)

j#i J#i k=1

Observe that the probability 7°(h) of reaching a history h € H under a behavioral-strategy profile b € B
can be decomposed as the product of the reach probabilities for any player i € [n] and the reach probabilities
of all players other than player ¢ reaching h; i.e.,

1105 (g k) = 7i(h) - 72 (R). (9)

Then, for each history h € H and each history A’ € H in the path from the root of the game tree to h, i.e., h’
is in p}, for some player i € [n], we can define the conditional reach probability of reaching h from h’ under
a behavioral-strategy profile b € B as

)b (W) > 0;
(k| W) = § T ’ (10)
0, otherwise.

As an example, consider the game tree with three levels of decision nodes shown in Figure 2.

Figure 2: A game tree with three levels of decision nodes. The path from the root history h; to the terminal
history z3 is highlighted in



Consider the behavioral-strategy profile b where Player 1 chooses action X at information set Z; with
probability 0.6 and action Y with probability 0.4; Player 2 chooses action A at information set Z, with
probability 0.7 and action B with probability 0.3; and, finally, at information set Z3, Player 1 chooses
action Z with probability 0.5 and action W with probability 0.5. Then, the reach probability of Player 1
reaching history hy under b is 7%(hg) = by (Y) = 0.4, while the reach probability of Player 2 reaching
hy under b is w5(hy) = ba(A) = 0.7. Thus, the reach probability of both players to reach hy under b is
7%(hy) = 78 (hy) - 74(hy) = 0.4 - 0.7 = 0.28. Similarly, the reach probability of Player 1 reaching terminal
history z3 under b is 7¢(23) = b1(Y) - b1(Z) = 0.4-0.5 = 0.2, while the reach probability of Player 2 reaching
z3 under b is 75(23) = ba(A) = 0.7. Thus, the reach probability of both players to reach z3 under b is
7(23) = wb(23) - m4(23) = 0.2- 0.7 = 0.14. Finally, the conditional reach probability of reaching terminal
) _ 014 _ 5,

history z3 from hy under b is 7°(z3 | hy) = ey = 038
Counterfactual utilities. The counterfactual utility of a player ¢ € [n] at an information set Z € J;
under a behavioral-strategy profile b € B measures the expected payoff for player ¢ under b, conditional on
some history in Z being reached, where each terminal history is weighted by the reach probability under b
of all other players reaching that history. Formally, for a player ¢ € [n], a behavioral-strategy profile b € B,
and an information set Z € J;, we define the counterfactual utility of player ¢ at Z under b as

W@ = Y wils) -7 (zlpl) - wi). (11)
2€Z:1€T;,-

Observe that the subset {z € Z | Z € J; .} of terminal histories is exactly the set of terminal histories that
can be reached from a history in the information set Z. Then, the sum in (11) simply computes the expected
payoff for player i by reaching those terminal histories, but weights each terminal history by the likelihood
of all other players reaching the history in Z from which that terminal history is reachable. In the sequel, we
use counterfactual utilities to evaluate the performance of actions at information sets. This induces a notion
of regret we call counterfactual regret.

Consider again the game tree in Figure 2 and the behavioral-strategy profile b defined above. Player 1
plays X and Y at Z; with probabilities 0.6 and 0.4, respectively, and Z and W at Z3 with probabilities 0.5
and 0.5, respectively, while Player 2 plays A and B at Z, with probabilities 0.7 and 0.3, respectively. For
Player 1 at information set Z3, the only terminal histories that pass through 75 are z3 and z4, and in both
cases the history visited at Zs is pl 7, = ha. Thus, 75(pl 7,) = ba(A) = 0.7 for z € {z3,24}. Moreover,
7(23| hy) = b1(Z) = 0.5 and 7°(z4 | ha) = by (W) = 0.5. Finally, the payoffs to Player 1 at these terminals
are u1(z3) = 1 and uy(z4) = 2. Thus, the counterfactual utility of Player 1 at Z3 under b is

W(Zs)= Y wh(ha)-7(z]ha) - wr(2) =0.7-(0.5-1+0.5-2) = 1.05. (12)

z€{z3,24}

Counterfactual regret. Given a behavioral-strategy profile b € 5 and an action o € Az at an information
set Z € J; for some player i € [n], we define bZ7% as the behavioral-strategy profile that mirrors b except
that player ¢ deterministically chooses a at Z; i.e.,

1, ifj=diand =0
b (B) = 4 0, if j=iand 8 e Az \ {a}; (13)
b;(B), otherwise.

Then, given a time horizon T' > 0 and a sequence of behavioral-strategy profiles (b1,...,br) with b; € B for
all t € [T], we define the counterfactual regret for player i € [n] from not having chosen action a € Az at
information set Z € J; up to time T as

T
T bI*)Ot b,
RI(Z.a) =) (v (Z) = v(T)). (14)
t=1
In other words, the counterfactual regret quantifies the local regret at each information set Z that player ¢
experiences from not choosing action «a at Z, with respect to the counterfactual utility at Z.



1.4 The CFR algorithm.

The CFR algorithm iteratively minimizes the counterfactual regret at each information set for all players by
updating their behavioral strategies based on the accumulated counterfactual regret up to that iteration via
regret matching [4]. In particular, at each iteration ¢ € [T, for each player ¢ € [n] and each information set
T € J;, the behavioral strategy b! € B; of player i is updated as

(R @), , -
f R; v 0:
bf(a) = ZﬁeAI (Rif_l(I,ﬂ))_*_7 ! EBE.AI( 7 ( aﬁ))+ > U

1 .
Az otherwise,

(15)

where ()1 = max{0,z} for all z € R. In other words, at each iteration, the probability of choosing each
action at each information set is proportional to the positive part of the accumulated counterfactual regret
from not having chosen that action up to the previous iteration.

Under standard regularity assumptions, the regret-matching updates guarantee that the cumulative coun-
terfactual regret at each information set grows at most on the order of (’)(\/T ) [4]; however, this bound con-
cerns local counterfactual regret rather than the standard regret of the game, and the CFR decomposition
theorem below provides the connection between the two.

Theorem 2 (CFR decomposition [1]). For an n-player EFG with perfect recall, let (b, ...,br) be a sequence
of behavioral-strategy profiles generated by the CFR algorithm in (15) over T iterations. Then, for each player
i € [n], the regret RT of player i after T iterations is bounded above by the sum of the positive parts of the
counterfactual regrets at each of their information sets; i.e.,

T T

R; < Z geliij;(Rz (T, a))+. (16)
ZeJ;

Thus, in an EFG with perfect recall, CFR treats each information set as a local regret-minimization problem

based on counterfactual utilities, and the decomposition theorem above shows that controlling counterfactual

regret at every information set is sufficient to control a player’s overall regret in the original game.
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