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Abstract

These notes cover extensive form games (EFGs), a fundamental framework in game theory for mod-
eling sequential interactions with imperfect information. We define EFGs formally, discuss key concepts
such as information sets and perfect recall, and explore strategies within this framework, including mixed
and behavioral strategies. A central result, Kuhn’s theorem, establishes the equivalence between mixed
strategies and behavioral strategies in EFGs with perfect recall. This equivalence has significant impli-
cations for the existence of Nash equilibrium (NE) in such games.
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1 Extensive Form Games

Extensive form games (EFGs) are games that capture the sequential nature of decisions, the timing of moves,
and the information available to players at each decision point. They are typically represented with game
trees, where nodes represent decision points, edges represent actions, and terminal nodes represent outcomes
with associated payoffs.

1.1 Game Trees

A game tree is a directed, rooted tree that represents the sequential structure of a game. Each node in the
tree corresponds to a decision point for a player, and each outgoing edge represents an action that a player
can take at that node. Terminal nodes (leaves) represent the possible outcomes of the game, along with
the payoffs for each player. For example, consider the following simple game tree shown in Figure 1, where
Player 1 (P1) makes the first move, followed by Player 2 (P2).
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Figure 1: A simple game tree.

A game tree can also have chance nodes that represent stochastic events in the game, such as random
card deals or dice rolls. These are typically drawn with outgoing edges labeled with outcome probabilities
(labels may be omitted when the probabilties are equal). An example of a game tree with chance nodes is
shown in Figure 2.
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Figure 2: A game tree with chance nodes.

Imperfect information. Imperfect information can be represented in EFGs using information sets, which
group together nodes that a player cannot distinguish among when making a decision. A player’s move must
be the same at all nodes within an information set, so nodes in the same set share the same available actions.
This captures the idea that a player may not have complete knowledge of the history of play (including their
own past actions) when making a decision. For example, if Player 2 cannot distinguish between two decision
nodes after Player 1’s move, those nodes are grouped into a single information set for Player 2, as depicted
in Figure 3.
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Figure 3: A game tree with an information set.

Kuhn poker. A classic example of an EFG with imperfect information is Kuhn poker [1], a simplified
version of poker involving two players and a deck of three cards: King (K), Queen (Q), and Jack (J). Each
player is dealt one card, and there is a single round of betting. The game tree for Kuhn poker is shown in
Figure 4. This game already captures key elements of imperfect information since neither player knows the
other’s card when making betting decisions.
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Figure 4: The game tree for Kuhn poker. Adapted from Gabriel Farina, MIT 6.S890—Topics in Multiagent
Learning (lecture notes), Massachusetts Institute of Technology, October 3, 2024.

1.2 Histories, Actions, and Payoffs

The nodes of the game tree represent the histories of actions taken by players up to that point in the game.
In an n-player EFG, each nonterminal history is associated with an acting player i € [n] or with the nature
player in the case of chance nodes. Players choose from the available actions (or, for the nature player, from
the possible outcomes) at that history, and play advances to the next history according to the game tree
structure. The set of all terminal nodes, or terminal histories, is denoted by Z. Terminal histories are not
associated with any player. Instead, each terminal history z € Z is associated with a payoff vector u(z) € R™
that assigns a real-valued payoff u;(z) to each player i € [n].

To model imperfect information, the histories associated with each player i € [n] are partitioned into
a collection J; of information sets. Each information set Z € J; is a set of histories that player ¢ cannot
distinguish among when making a decision. If all information sets are singletons, the game is said to have
perfect information. In contrast, if any information set contains multiple histories, the game has imperfect



information. All histories in the same information set Z share the same set of available actions Az available
to player i.

Simplifications. For simplicity, we assume that, for each player, the available actions at each information
set are disjoint; that is, Az N Az = 0 for all i € [n] and Z,7’ € J; with Z # Z’. Furthermore, we assume
that there are no chance nodes in the game tree. All results in this section extend to EFGs with chance
nodes by treating nature as an additional player with fixed distributions at its histories.

1.3 Perfect Recall

A standard assumption in EFGs is that players have perfect recall, meaning they remember all their previous
actions and the information available to them when those actions were taken. The condition can be formalized
as follows:

Definition 1 (Perfect Recall). A player i € [n] has perfect recall if, for any information set Z € J; and any
two histories h, h' € Z, the sequences of actions taken by player 7 that lead to h and h’ are identical. An
EFG has perfect recall if all players have perfect recall.

Without the assumption of perfect recall, solving EFGs can be intractable [2].

1.4 Strategies in Extensive Form Games
1.4.1 Normal-Form Representation

The normal-form representation of an EFG is obtained by expressing the game in terms of players’ strategies
and payoffs, rather than the game tree structure. As the decision nodes within any information set are
indistinguishable to the player, it suffices to define a strategy as a sequence of actions that the player takes
at each information set; i.e., the set of pure strategies of player i € [n] is given by

Accordingly in an EFG we define the set of mized strategies for player i via the normal-form representation;
specifically, it is the probability simplex A(S;) over the set of pure strategies S;.

Given a terminal history z € Z, let (ai,l, ceey ai,mi) denote the sequence of actions taken by player 4
to reach z, where m; is the length of the action sequence. Let Z;; denote the information set at which
action a; ; was taken. Then the probability of reaching terminal history z under a mixed-strategy profile
o=(01,...,00) 18

1?71'(2:) = Z Z HO’i(Si) . 1{87:717',j = Oy j Vj S [mzﬂ}

s1€81 Spn €S, i=1
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(2)

The last equality follows from the independence of players’ strategies and the per-player factorization of the
indicator. It follows from Nash’s theorem that a mixed-strategy Nash equilibrium (NE) always exists in
EFGs.

As an example, consider the EFG shown in Figure 3. Player 1 has two possible actions at the root node
(X or Y), and Player 2 has two possible actions (A or B) at each of the two decision nodes. Thus, Player
1’s set of pure strategies is {X,Y}. Furthermore, since both decision nodes of Player 2 belong to the same
information set, Player 2’s set of pure strategies is {A, B}. Then the normal-form representation of the game
can be expressed as the payoff matrix:

X {(3,2) (0,0) (3)



As another example, consider the EFG shown in Figure 1. Again, Player 1 has two possible actions at
the root node (X or Y'). However, Player 2 has two information sets, each with two possible actions (A or B
in the first set, and C or D in the second). Thus, Player 1’s set of pure strategies is still {X, Y}, but Player
2’s set of pure strategies is now {AC, AD, BC, BD}, where, for example AC denotes choosing action A in
the first information set and action C' in the second. Then the normal-form representation of the game can
be expressed as thepayoff matrix:

AC AD BC BD
X |(3,2) (3,2) (0,0) (0,0) (4)
Y | (1,1) (2,3) (1,1) (2,3)

Observe that the size of the normal-form representation grows exponentially in the number of information
sets and available actions, making it impractical for large EFGs.

1.4.2 Behavioral-Form Representation

In contrast to the normal-form representation, the behavioral-form representation of an EFG focuses on
players’ strategies at each decision point in the game tree. A behavioral strategy for a player specifies a
probability distribution over the available actions at each of the player’s information sets. Thus the set of
behavioral strategies for player i € [n] is given by

B; = H A(AI)a (5)

eJ;

where A(Az) denotes the probability simplex over the action set Az. Behavioral strategies are particularly
useful in EFGs with imperfect information, as they allow players to randomize at each decision point based
on the information available to them.

For example, in the EFG shown in Figure 3, a behavioral strategy for Player 2 could specify choosing A
with probability 0.7 and B with probability 0.3 at each history in their information set. The player’s behav-
ioral strategy is then characterized by the distribution at that information set, i.e., ((0.7,0.3)). Similarly,
in the EFG shown in Figure 1, a behavioral strategy for Player 2 could specify choosing A with probability
0.6 and B with probability 0.4 in the first information set, and choosing C' with probability 0.5 and D with
probability 0.5 in the second. Then the behavioral strategy of Player 2 is ((0.6, 0.4), (0.5, 0.5)).

Behavioral Nash equilibrium. Given a terminal history z € Z, let (am, ey ai7mi) denote the sequence
of actions taken by player ¢ to reach z, where m; is the length of the action sequence. Then the probability
of reaching terminal history z under a profile of behavioral strategies b = (b1,...,b,) is given by
n m;
Pr(z) = TTIT bieis)- (6)
i=1j=1

Here we write b;(«) unambiguously for any action « of player i (the player’s information sets are disjoint,
so action labels do not collide).
The expected payoff of player ¢ € [n] under a profile of behavioral strategies b = (b1,...,b,) is

ui(b) = Elui(2)] = 3 Pr(z)ui(z). 7)

A behavioral NE b* is a profile of behavioral strategies in which no player can improve their expected payoff
by unilaterally changing their behavioral strategy; i.e.,

ui(b*) > ui(bi,b*_i), Vi € [[n]], b; € B;. (8)

In general, a behavioral NE might not exist in EFGs. However, under the assumption of perfect recall, we
have the following important result known as Kuhn’s theorem.



1.4.3 Kuhn’s Theorem

Theorem 2 (Kuhn’s Theorem [3]). In any EFG with perfect recall, for any mized-strategy profile o =
(01,...,0n) there exists a profile of behavioral strategies b = (by,...,by,) such that Pry(z) = Pry(z) for all
z € Z. Conversely, for any profile of behavioral strategies b = (by,...,by,) there exists a mized-strategy profile
o= (01,...,0n) such that Pr,(2) = Pry(2) for all z € Z.

Proof. For each player i € [n], since player ¢ has perfect recall, for each information set Z € J; there exists
a unique sequence of actions taken by player i to reach any history in Z. Consequently, for each action
a € Az, there exists a unique sequence of actions taken by player i that culminates in choosing «. Let
do = (¢a1,- - - Ga,m, ) denote this unique sequence, where m,, is the length of the action sequence. Let Z, ;
denote the information set at which action ¢, ; was taken.

For each player i € [n] and each mixed strategy o; € A(S;), define

rii(a) = Z oi(si) - 1{31-(10”) =(qa,;Vj € [[maﬂ}, Vae Az, T € J;. (9)
S €S;

Moreover, for each b; € B;, define
i (a) = H bi(¢a,j), Yoae Az, T e J;. (10)
j=1

Then, by Equations (2) and (6), to show that Pr,(z) = Pry(z) for all z € Z, it suffices to show that
7 (a) = r(a) for all i € [n], T € J;, and o € Az.

For the forward direction, let o; € A(S;) be any mixed strategy for player ¢ € [n]. Define the corre-
sponding behavioral strategy b; € B; by

) . o
m, if mq > 1 and 77" (go,m,—1) > 0,
bi(a) = ri(a), if mg =1, (11)
i A11\7 otherwise,

for all & € Az and 7 € J;. Note that b;(«) is well defined: by (9), b;(+) is a valid probability distribution
over Az for each 7 € J;.

Then by induction on m,, it can be shown that r7* (o) = () for all Z € J; and a € Az. Indeed, for the
base case my = 1, we have 77 (a) = b;(a) = 77 (a). For the inductive step, suppose a € Az with m, > 1.

Then, we have that % () (0 bi(@) -7 (qum,, —1) = bi(@) 77" (qa.m.. 1) (by the induction hypothesis). Thus,
Yi(a) = 0. Moreover, by (9), it follows that r7*(a) < 77*(qam, 1) = Ostherefore

if r7"(¢a,ma—1) = 0, then 7"

7(a) = i (a) = 0.

On the other hand, if 7" (ga,m,—1) > 0, then

r

an i (a)

i (e) = bia) - 17 (dama 1) ) 77 (Goma—1) = 17" (@), (12)

rigi (QQ,ma—l
Thus we have shown that, for any mixed-strategy profile o, there exists a profile of behavioral strategies b
that induces the same distribution over terminal histories; i.e., Pr,(z) = Pry(z) for all z € Z.
For the converse, let b; € B; be any behavioral strategy for player i € [n]. Define the corresponding
mixed strategy o; € A(S;) by
ai(si) = H bi(si,1)7 Vsl (S Sl (13)
ZeJi

Observe that o;(+) is a well-defined product distribution obtained by sampling independently at each infor-
mation set.



Let Jo ={Za1s---,Za,m,}- Then

(o) = Z ( H bi(&',I)) “15i(Zaj) = qa,; Vi € [mal} (14a)

5;€S; \IeJ;

ﬁ bi(qaj) Z H bi(Bz) (14b)

(Br)zeg,\T0 ZET\Tu

= ﬁbi(qa,j) I > um (14c)
j=1

ZeJi\Ja BEAZ
=1

2l a). (14d)

Thus we have shown that, for any profile of behavioral strategies b, there exists a mixed-strategy profile o
that induces the same distribution over terminal histories; i.e., Pr,(z) = Pry(z) for all z € Z. O

Kuhn’s theorem establishes the equivalence between mixed strategies and behavioral strategies in EFGs
with perfect recall. It follows that NE exist in EFGs with perfect recall, since mixed-strategy NE exist by
Nash’s theorem.
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