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Abstract

We introduce finite discounted infinite-time horizon Markov games as a mathematical
framework for multi-agent RL and show existence of stationary Nash equilibrium policies.
Then, we characterize Nash policies as first-order stationary points of the pseudo-gradient
vector field. We subsequently introduce two fundamental classes of Markov games in
which Nash equilibrium computation is tractable: zero-sum Markov games for which we
prove the minmax theorem and Markov potential games for which any stationary point
of the potential function is a Nash policy. We discuss independent learning in Markov
games using policy gradient methods. Finally, we briefly comment on the regret analysis
framework for Markov games.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be enriched over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs. Research on the topic is also still very active.

1 Markov Games: A Theoretical Framework for Multi-Agent RL

In multi-agent reinforcement learning (RL), several agents interact within a shared dynamic
and uncertain environment evolving over time depending on the individual strategic decisions
of all the agents. Each agent aims to maximize their own individual reward which may
however depend on all players’ decisions. Markov games (a.k.a. stochastic games) offer a
formal mathematical framework for modeling multi-agent reinforcement learning problems.

1.1 Definition of Markov Games

In Markov games, multiple agents interact with each other in a dynamically changing environ-
ment. The formal definition is as follows.

Definition 1 (Markov Game, Shapley (1953)). A discounted infinite time horizon Markov Game1 is
defined by a tuple:

Γ := ⟨N ,S , (Ai)i∈N , P, (ri)i∈N , ρ, γ⟩ (1)

where

• N ≜ {1, · · · , N} with N ≥ 2 is the set of players,

• S is a finite set of states2,

• Ai is a finite set of actions for each i ∈ N . We denote by A ≜ ×i∈NAi the set of joint actions,

• P : S ×A → ∆(S) is the Markov transition kernel, where we use throughout this paper the
notation ∆(S) for the set of probability distributions over the set S ,

• ri : S ×A → R is the reward function of agent i ∈ N ,

• ρ ∈ ∆(S) is an initial distribution over states,

• γ ∈ (0, 1) is a discount factor .

1We focus on the discounted infinite horizon setting, variants for finite horizon and undiscounted/total
cumulative sum rewards can also be defined similarly.

2Extension to infinite countable or even continuous state action spaces is possible under additional technical
assumptions, we focus on the finite state action setting.
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Remark 2. There are two useful interpretations of the definition:

• Markov games can be seen as a generalization of Markov Decision Processes (case N = 1)
which have been extensively studied in the literature, see Puterman (2014); Howard (1960)
for textbook references.

• Markov games extend normal-form games to a stateful sequential setting (with a shared
state).

Policies. For each i ∈ N , denote by πi : S → ∆(Ai) the policy of agent i and Πi the set of
all possible Markov stationary policies for agent i ∈ N . We denote by π = (πi)i∈N the joint
policy and by Π ≜ ×i∈N Πi the set of joint Markov stationary policies.

Interaction protocol. In a Markov game, the agents’ interaction with the environment unfolds
as follows: At each time step t ≥ 0, the agents observe a shared state st ∈ S and choose a joint
action at = (at,i)i∈N according to their joint policy π(t), i.e. for every i ∈ N , at,i is sampled
according to π

(t)
i (·|st). Each agent i ∈ N receives a reward ri(st, at). Then the game proceeds

by transitioning to a state st+1 drawn from the distribution P(st, at) .

Occupancy measure. For any joint policy π ∈ Π, we define the state occupancy measure dπ
ρ

for every state s ∈ S by

dπ
ρ (s) = (1 − γ)

∞

∑
t=0

γtPρ,π(st = s) . (2)

This quantity captures the visitation frequency of each state.

Value functions. For each joint policy π ∈ Π, and each i ∈ N , define the state and state-action
value functions Vπ

i : S → R, Qπ
i : S ×A → R for each s ∈ S , a ∈ A by

Vπ
i (s) ≜ E

π

[
∞

∑
t=0

γtri(st, at)|s0 = s

]
, Qπ

i (s, a) ≜ E
π

[
∞

∑
t=0

γtri(st, at)|s0 = s, a0 = a

]
.

Observe then that for any joint policy π ∈ Π, any i ∈ N and any state s ∈ S ,

Vπ
i (s) = ∑

a∈A
π(a|s)Qπ

i (s, a) . (3)

We use the notation Vπ
i (ρ) ≜ Es∼ρ[Vπ

i (s)] for any initial state distribution ρ and any joint
policy π ∈ Π .

Definition 3 (Nash equilibria). For any ε ≥ 0, a joint policy π = (πi)i∈N ∈ Π is an ε-approximate
Nash equilibrium for the game Γ if for every i ∈ N and every π′

i ∈ Πi, Vπi ,π−i
i (ρ) ≥ Vπ′

i ,π−i
i (ρ)− ε.

When ε = 0, such a policy π from which no agent has an incentive to deviate unilaterally, is called a
Nash equilibrium policy.

1.2 Existence of stationary Markovian Nash equilibria

Theorem 4 (Existence of stationary Markovian Nash policy, Fink (1964)). Every discounted
infinite-horizon stochastic game with a finite number of states, actions, and players (as defined in
Definition 1), has a stationary Markovian Nash equilibrium policy, i.e. there exist πi : S → (∆Ai) for
all i ∈ N s.t. for all i ∈∈ N and any policy π′

i (not necessarily Markovian), Vπ′
i ,π−i

i (ρ) ≤ Vπi ,π−i
i (ρ) .

Proof. (Proof sketch) Similarly to the proofs of Nash’s theorem, there are several proofs for this
theorem based again on fixed point arguments. The original proof of Fink (1964) is based on
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Kakutani’s fixed point theorem. There is an alternative proof using a Nash mapping similar
to the proof we provided in the case of finite normal-form games. We provide here a sketch
of proof following this second strategy. A complete proof using this strategy can be found
for instance in Deng et al. (2023). Consider the mapping φ : Π → Π defined for each player
i ∈ N , each action ai ∈ Ai at each state s ∈ S as follows:

φ(π)i(s, ai) =
πi(ai|s) + max

(
0, Qπi ,π−i

i (s, ai)− Vπi ,π−i
i (s)

)
1 + ∑bi∈Ai

max
(

0, Qπi ,π−i

i (s, bi)− Vπi ,π−i
i (s)

) . (4)

The mapping φ is continuous over the convex compact set of all stationary Markov policies
(as value functions can be shown to be continuous w.r.t. policies). Hence, there exists a fixed
point π⋆ of φ by Brouwer’s fixed point theorem. It remains to show that π⋆ is Nash policy.

1.3 Characterization of Nash equilibria as first-order stationary points

The value function of each agent is non-concave in their policy in general, as this is already
the case in standard single-agent RL (see e.g. Lemma 1 in Agarwal et al. (2021)). Nevertheless,
the following crucial result establishes a gradient domination property which holds per-agent.
This structural property relates utility change under unilateral policy deviation to individual
policy gradients.

Proposition 5 (Agentwise Gradient Domination). Suppose that for all π ∈ Π, s ∈ S , dπ
µ (s) > 0 .

Then, for all i ∈ N , all policies π = (πi, π−i) ∈ Π, π′
i ∈ Πi, we have for any full-support

distribution µ, ρ ∈ ∆(S),

Vπ′
i ,π−i

i (µ)− Vπi ,π−i
i (µ) ≤ CG · max

π̃i∈Πi
⟨∇πi V

π
i (ρ), π̃i − πi⟩

where the minimax distribution mismatch coefficient: CG := maxi∈N maxπ∈Π minπ⋆
i ∈Π⋆

i (π−i)

∥∥∥∥∥ d
π⋆

i ,π−i
µ

d
πi ,π−i
ρ

∥∥∥∥∥
∞

,

where Π⋆
i (π−i) denotes the set of best response policies for agent i, is finite.

The above result has been shown in Daskalakis et al. (2020) for 2-player zero-sum Markov
games, in Leonardos et al. (2022) for Markov potential games and in Zhang et al. (2024);
Giannou et al. (2022) for general-sum Markov games.

We define the pseudo-gradient vector field notation for every joint policy π ∈ Π:

vi(π) := ∇πi V
π
i (µ) , v(π) = (vi(π))i∈N . (5)

Note that the vector field v is not necessarily a gradient field in general, i.e. the existence of
a function f s.t. v = ∇ f is not guaranteed in general. Indeed, each vi is the gradient of a
different function.

Proposition 6 (First-order Stationary policies are Nash policies). Suppose that for all π ∈ Π, s ∈
S , dπ

µ (s) > 0 . A (joint) policy π⋆ ∈ Π is a Nash policy if and only if it is first-order stationary, i.e.

⟨v(π⋆), π − π⋆⟩ ≤ 0, ∀π ∈ Π . (FOS)

Moreover, for any ε > 0, if a policy π⋆ is a ε-FOS policy, i.e. it satisfies: ⟨v(π⋆), π −π⋆⟩ ≤ ε, ∀π ∈ Π ,
then π⋆ is also a (CG ε)-Nash policy, where CG is the distribution mismatch coefficient defined in Prop. 5.

Proof. We prove both implications. We use the shorthand notation ui(π) = Vπ
i (ρ) in this proof.

(i) If π⋆ is a Nash policy then π⋆ is FOS.
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This implication is standard in optimization. We provide a proof here for completeness.
Let π⋆ be a Nash policy. By definition of the differentiability of ui w.r.t πi at π⋆, we can write
for any η > 0 and any policy π′

i ∈ Πi (using δi := π′
i − π⋆

i ) that

ui(π
⋆
i + ηδi, π⋆

−i) = ui(π
⋆
i , π⋆

−i) + η ⟨∇πi ui(π
⋆), δi⟩+ η∥δi∥ · oη→0(1) . (6)

Therefore, we obtain by rearranging the identity

⟨∇πi ui(π
⋆), π′

i − π⋆
i ⟩ =

1
η
(ui(π

⋆
i + η δi, π⋆

−i)− ui(π
⋆
i , π⋆

−i))− ∥δi∥ · oη→0(1) . (7)

By the definition of a Nash equilibrium policy, it follows that

⟨∇πi ui(π
⋆), π′

i − π⋆
i ⟩ ≤ −∥δi∥ · oη→0(1) . (8)

Taking η → 0 yields ⟨∇πi ui(π
⋆), π′

i − π⋆
i ⟩ ≤ 0, i.e.⟨vi(π

⋆), π′
i − π⋆

i ⟩ ≤ 0 . As i is arbitrary in N ,
the inequality holds for all i ∈ N and summing up these inequalities yields ⟨v(π⋆), π′ − π⋆⟩ ≤
0 for all π′ ∈ Π which means that π⋆ is a FOS policy.

(ii) If π⋆ is a FOS policy then π⋆ is also a Nash policy.

The result follows from our gradient domination result of Proposition 5.

Let π⋆ = (π⋆
i , π⋆

−i) ∈ Π be a FOS policy. By definition it satisfies for all π ∈ Π, ⟨v(π⋆), π −
π⋆⟩ ≤ 0 for all π ∈ Π . Choose π = (π′

i , π⋆
−i) in this FOS inequality to obtain ⟨vi(π

⋆), π′
i −

π⋆
i ⟩ ≤ 0 for all i ∈ N and for all π′

i ∈ Πi . By Proposition 5, for all i ∈ N and for all π′
i ∈ Πi,

we have
ui(π

′
i , π⋆

−i)− ui(π
⋆
i , π⋆

−i) ≤ CG · max
π̃i∈Πi

⟨vi(π
⋆), π̃i − π⋆

i ⟩ . (9)

This in turn implies that ui(π
′
i , π⋆

−i)− ui(π
⋆
i , π⋆

−i) ≤ 0 for all i ∈ N and for all π′
i ∈ Πi and

hence π⋆ is a Nash policy.

1.4 Hardness results for Nash equilibrium computation

Computing Nash equilibria in Markov games is at least as hard as in normal-form games
as these are particular cases of Markov games when the state space consists of a single state
(stateless setting) and γ = 0 (with the convention 00 = 1). Complexity results for general-sum
Markov games have been established recently in the literature (Daskalakis et al., 2023; Jin et al.,
2023; Foster et al., 2023; Deng et al., 2023).

2 Subclasses of Markov Games

We focus here on two fundamental subclasses of Markov games in which Nash equilibrium
computation is tractable, mirroring our presentation for (static) normal-form games. Other
classes such as adversarial team Markov games have also been investigated in the literature.

2.1 Zero-Sum Markov Games

Definition 7 (Two-Player Zero-Sum Markov Game). A Markov game Γ is said to be zero-sum if the
reward functions satisfy r1 + r2 = 0 .

Note that the definition immediately implies that Vπ1,π2
1 (ρ) + Vπ1,π2

2 (ρ) = 0 for all poli-
cies π1 ∈ Π1, π2 ∈ Π2 .

Similarly to two-player zero-sum normal-form games, a minmax theorem holds.
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Theorem 8 (Minmax theorem, Shapley (1953)). For any two-player zero-sum Markov game,

min
π1∈Π1

max
π2∈Π2

Vπ1,π2
2 (ρ) = max

π2∈Π2
min

π1∈Π1
Vπ1,π2

2 (ρ) . (10)

The duality gap is equal to zero. Note that the value function is not convex-concave in
general.

Proof. (Proof sketch) The proof relies on a contraction argument based on Shapley’s operator
which we define in the following. Let val(·) be the value operator which assigns to each payoff
matrix the value of the corresponding finite zero-sum game which is well-defined by the
(classical) min-max theorem. Then define the operator T : R|S| → R|S| for any vector V ∈ R|S|

and any s ∈ S by

T V(s) := val

[
r2(s, a, b) + γ ∑

s′∈S
P(s′|s, a, b)V(s′)

]
a∈A1,b∈A2

 (11)

It can be easily shown using the non-expansiveness of the value operator (i.e. |val(A) −
val(B)| ≤ maxi,j |Ai,j − Bi,j| for two payoff matrices A, B) that T is a γ-contraction in the
infinity norm, i.e. ∥T V − T V ′∥∞ ≤ γ∥V − V ′∥∞ for any V, V ′ ∈ R|S|. This implies in turn
that T admits a unique fixed point by Banach fixed-point theorem (i.e. there exists a unique
V⋆ ∈ R|S| s.t. T V⋆ = V⋆).

2.2 Markov Potential Games

The class of Markov Potential games defined below extends potential games in static normal-
form games.

Definition 9 (Markov Potential Game). A Markov game Γ is a Markov Potential Game (MPG) if
∀s ∈ S , ∃Φs : Π → R (player independent) s.t. ∀i ∈ N , (πi, π−i) ∈ Π, π′

i ∈ ∆(Ai)
S ,

Vπi ,π−i
i (s)− Vπ′

i ,π−i
i (s) = Φs(πi, π−i)− Φs(π

′
i , π−i)

It follows from taking the expectation w.r.t. the inital state distribution ρ in the above
definition that we can also write:

Vπ′
i ,π−i

i (ρ)− Vπi ,π−i
i (ρ) = Φπ′

i ,π−i(ρ)− Φπi ,π−i(ρ) , (12)

where we slightly abuse notation by using the overloaded notation Φπ(ρ) ≜ Es∼ρ[Φπ(s)] for
any policy π ∈ Π (similarly as for value functions).

The identical-interest case is an important particular case of this definition. In this case in
which all the reward functions are identical (ri = rj, ∀i, j ∈ N ), it can be easily seen that the
total potential function is the value function of any of the players. Beyond this important case,
conditions to obtain MPGs with non-identical rewards were identified in the literature.

3 Independent Policy Gradient Methods for Markov Games

3.1 Independent learning protocol

Independent learning has recently attracted increasing attention thanks to its versatility as a
learning protocol. We refer the reader to a recent nice survey on the topic (Ozdaglar et al.,
2021). In this protocol, agents can only observe the realized state and their own reward and
action in each stage to individually optimize their return. In particular, each agent does not
observe actions or policies from any other agent. This protocol offers several advantages
including the following aspects:

5
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(a) Scaling: independent learning dynamics do not scale exponentially with the number of
players in the game (also known as the curse of multi-agents), guarantees will typically
scale with ∑N

i=1 |Ai| rather than ∏N
i=1 |Ai|;

(b) Privacy protection: agents may avoid sharing their local data and information to protect
their privacy and autonomy;

(c) Communication cost a central node that can bidirectionally communicate with all agents
may not exist or may be too expensive to afford.

Therefore, this protocol is particularly appealing in several applications where agents need
to make decisions independently, in a decentralized manner.

3.2 Multi-agent policy gradient algorithm

In single agent RL, a natural algorithm for policy optimization consists in performing gradient
ascent steps w.r.t. the policy optimization objective using gradients w.r.t. some policy parame-
terization. Policy gradient estimates can be computed using Monte-Carlo estimates only based
on sampled trajectories (Sutton et al., 1999; Williams, 1992).

Theoretical results on the convergence of policy gradient methods in single-agent RL are
recent in the literature. We refer the reader to Agarwal et al. (2021); Xiao (2022) for a more
detailed exposition regarding these methods and their convergence rates.

In this section, we briefly show how this approach can be extended to our multi-agent
setting. Note that Proposition 6 is an additional theoretical motivation for resorting to these
policy gradient methods.

Theorem 10 (Policy gradient theorem). For any player i ∈ N and any policy π ∈ Π,

∇πi V
π
i (µ) = Eµ,π

[
+∞

∑
t=0

γtri(st, at)
t

∑
t′=0

∇πi log πi(ai,t′ |st′)

]
. (13)

Proof. The result follows from applying the standard policy gradient theorem for single-agent
RL (e.g. Sutton et al. (1999)) and selecting the ith coordinate.

Using the above result, stochastic policy gradients ∇̂πi V
π
i (µ) can be computed by sampling

finite-length trajectories using Monte-Carlo estimates. The multi-agent policy gradient algo-
rithm is then run independently by each agent. Each agent i ∈ N seeks to maximize their own
value function and updates their policy as follows:

πt+1
i = πt+1

i + ηi∇̂πi V
πt

i (µ) , (14)

where ηi is a positive step size.

4 Regret Analysis Framework for Markov Games

Definition 11 (Nash regret). We define Nash regret for every time horizon T ≥ 1 as follows:

Nash-regret(T) ≜
1
T

T

∑
t=1

max
i∈N

max
π′

i∈Πi
V

π′
i ,π

(t)
−i

i (ρ)− Vπ(t)

i (ρ) ,

where π(t) = (π
(t)
i , π

(t)
−i ) is the joint policy of the N players at time step t ∈ {1, · · · , T} and ρ is the

initial distribution over the state space S .

6
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At each time step t and for every player i ∈ N , the joint policy π(t) is compared to the
policy where player i unilaterally deviates to its best response to policy π

(t)
−i . The difference in

value functions quantifies player i’s Nash gap. The Nash regret computes the average over the
worst player’s Nash gap induced by the joint policy π(t) over the time horizon T .

Proposition 12. The following statements hold true:

(i) For every T ≥ 1 , Nash-regret(T) ≥ 0 .

(ii) If Nash-regret(T) ≤ ε for some accuracy ε > 0, then there exists t∗ ∈ {1, · · · , T} such that π(t∗)

is an ε-Nash equilibrium.

Proof. The result is immediate from the definition.

Several Nash regret and convergence to approximate Nash guarantees can be found in the
recent literature, using similar techniques to the ones we discussed in the previous lectures for
normal-form games.
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