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Lecture 10: Learning (Coarse)-Correlated Equilibria in General-Sum Games

Lecturer: Anas Barakat

October 16, 2025

Abstract

We introduce the equilibrium concepts of correlated, coarse correlated, and more gen-
erally ®-equilibria. In general-sum games, we show that if all players use no-internal,
no-external and more generally no-®-regret learning algorithms, the joint empirical dis-
tribution of play respectively converges to the sets of correlated, coarse-correlated and
®-equilibria.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs. Research on the topic is also still very active.

1 Coarse Correlated and Correlated Equilibria

Throughout this section, consider a finite normal-form game I' = (Z, {A; }icz, {ui}icz) . For
each agent i € Z, we denote by X} := A(A4;) the set of mixed strategies.

1.1 Hardness of Nash equilibrium computation

Besides special cases such as the zero-sum or potential settings discussed in the previous
lectures, computing a Nash equilibrium is computationally hard in general." Papadimitriou
(1994) introduced the PPAD complexity class (PPAD stands for Polynomial Parity Arguments
on Directed graphs), showing that computing Brouwer fixed points is PPAD-complete and
crystallizing why fixed-point-guaranteed solutions may be intractable in general. Building on
this framework, Daskalakis et al. (2009a) proved that computing a (mixed) Nash equilibrium
in games with three or more players is PPAD-complete, relating Nash search to Brouwer’s
tixed point computation.” The two-player case was later settled by Chen and Deng (2006),
who showed that computing a bimatrix Nash equilibrium is also PPAD-complete, eliminating
hopes for a general polynomial-time algorithm even in the bimatrix setting.

1.2 Coarse correlated equilibrium

Recall that a mixed strategy Nash equilibrium is a strategy profile (x1,...,x,) € Ty A(Ay)
such that no unilateral deviation is profitable for any player, i.e.,

VieI, Vaie A, wila,x) <ulx,x). (1)

Note in particular that players randomize their strategies independently. The probability
of playing a joint action a = (ay,...,an) € [Tt; Ay is given by the product [TY; x,, of the
probabilities of each agent k € 7 playing action aj.

Coarse correlated equilibria relax this definition and allow for correlated strategies, i.e. strate-
gies x € A(TTY.; Ai) (rather than only independent ones in TTY_; A(Ay)).

"We will not cover this topic in details in this course, we only provide a brief account without formal definitions
and statements.
>For a shorter, less technical and more accessible exposition, see Daskalakis et al. (2009b) for the main ideas.
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Definition 1 (Coarse correlated equilibrium (Moulin and Vial, 1978)). A coarse correlated
equilibrium (CCE) is a correlated strateqy x € A(TTY., Ayx) such that

IE(ai,a,,-)Nx [ui(aﬁ,a_i)} < E(ﬂi,ﬂfi)wx[ui(ai,a_i)] VieZ, El; € Ai. (2)

Remark 2. A Nash equilibrium is a CCE x which is a product distribution. As a consequence,
the set of CCEs is a superset of the set of Nash equilibria. In particular, a coarse correlated
equilibrium always exists (in any game).

Proposition 3. The set of CCEs is a convex polytope.

Proof. A CCE can be described by a finite dimensional vector x € R/l whose entries x,, ... 4,
(for (ay,...,an) € A satisfy:

xu1,...,tZN 2 O/ v(alr e ,ﬂN) S ~’4/ Z xal,...,aN =1 ’ (3)
ﬂ]GA],"' ,aNGAN
Xay,..ay wi(al, a_;) < Y. X ayui(a,as) VieI, aie A, (4)
M EA, - an€A, mEAL, - anEA,
where the last constraints follow from expanding the expectation in the inequalities defining
CCEs (see Definition 1). It follows that the set of CCEs is the intersection of a finite set of linear
constraints. Therefore it is a convex polytope. O

Remark 4 (Computation). The above proof also shows that computing a CCE can be recast
as solving an optimization problem where the variables are the entries of the probability
distribution x. The number of constraints is polynomial in the size of the payoff table, and
linear programming can be used to compute and even optimize over the set of CCEs in time
polynomial in the product [T, | A .

In contrast, the set of Nash equilibria is not guaranteed to be convex in general beyond
zero-sum games, and can be quite complex topologically, see e.g. Kohlberg and Mertens (1986).

CCEs may contain correlated strategies that assign positive probability only to strictly
dominated strategies (Viossat and Zapechelnyuk, 2013). In contrast, correlated equilibria
cannot be supported on dominated strategies.

1.3 Correlated equilibrium

Definition 5 (Correlated equilibrium (Aumann, 1974)). A correlated equilibrium (CE) is a
correlated strategy x € A(TTh-, Ay) such that

B0 nxltti(pi(ai),a-i)] < B o yoxluila,ay)]  VieI Ve A — A (5)

Remark 6. A similar definition with a conditioning formulation can also be found: After I see
my private recommendation, following it should be at least as good as switching to any fixed
action.

Proposition 7. The set of CEs is a convex polytope.
Proof. Same as for CCEs. O
Remark 8. For more about existence of correlated equilibria, see Hart and Schmeidler (1989)

who provide a (non-fixed point) proof of the nonemptiness of the set of correlated equilibria.

Remark 9. Similarly to CCEs, CEs can be computed in polynomial time using linear program-
ming.

Remark 10. NE C CE C CCE, see Fig. 1.
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Figure 1: Equilibrium concepts. Pure NE: pure Nash equilibrium (need not always exist,
difficult to compute in general); Mixed NE: Mixed Nash equilibrium (always guaranteed to
exist, hard to compute in general); CE: correlated equilibrium (easy to compute, e.g. via
no-internal regret algorithms), CCE: coarse correlated equilibrium (easy to learn, e.g. via
no-external regret algorithms).

1.4 Interpretation of correlated play in games

In this section, we provide an interpretation of correlated play in games using what is
commonly used a correlation devise or a mediator.

A correlation device is a trusted “referee” (or mediator) that suggests actions to players. It
cannot force any player to follow the suggestion, but every player knows the rule it uses to
make suggestions. The device has a public distribution x which is a probability distribution for
drawing a full action profile. Before each play of the game, the device draws (a1,...,cN) ~ x
and privately tells player i only their recommendation. Each player can either follow their
recommendation or switch to some other action.

We comment now on the difference between CE and CCE:

¢ For CCE, players decide in advance whether they will commit to “follow whatever the
device tells me”, before seeing any recommendation. Profitable deviations to check are
hence alternative actions which do not depend on the message.

* For CE, players can wait to see the recommendation and then decide whether to follow
it. Now the deviation can depend on the message (“if the device says L, switch to R;
otherwise follow”).

Both CE and CCE allow players to coordinate using shared random advice. CE gives
players more flexibility in how to deviate (after seeing the message). CCE is therefore a weaker
equilibrium notion (easier to satisfy), while CE is stronger.

For an example illustrating the gap between CE and CCE, see for instance example 5.7 in
Ratliff (2021).

1.5 Example: Traffic light

Two players choose go or stop. Payoffs are as follows:

| stop go
stop | (0,0)  (0,1)
go | (1,0) (-=5,-5)

Mediator (traffic light). Let x put probability 1 on (go, stop) and 3 on (stop, go). This is public
knowledge, but each player privately sees only their own recommendation.
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Check CE (after seeing the message).

e If Player 1 is told go, she infers Player 2 was told stop. Following: u;(go, stop) = 1.
Deviate to stop: 11 (stop, stop) = 0. So following is better.

e If Player 1 is told stop, she infers Player 2 was told go. Following: u;(stop,go) = 0.
Deviate to go: u1(go,go) = —5. So following is better.

By symmetry for Player 2, x is a CE.

Check CCE (commit before seeing the message). For Player 1:
E[Follow] = 1-1+1-0=0.5, E[Always go] = £-1+0-(—5) = 0.5, E[Always stop] = 0.

Thus 0.5 > 0 and 0.5 > 0.5, so following weakly dominates any fixed deviation; x is a CCE.
(Again, symmetry gives the same for Player 2.)

Not a mixed Nash. The distribution x never recommends (go, go) or (stop, stop), so x is not a
product distribution; hence it cannot be a mixed Nash equilibrium (which is independent by
definition). Independence cannot produce “never both go, never both stop” unless it collapses
to a single pure outcome.

Takeaway. The distribution is public (everyone knows how the light is drawn), but messages
are private (each driver only sees their own light). CE checks best responses after seeing
the private message; CCE checks that committing to follow before seeing it beats any fixed
always-do-a; rule. This traffic-light x satisfies both.

1.6 P-equilibrium

Let ®; be a finite subset of linear maps ¢; : A(A;) — A(A;). A linear map ¢; extends to

o - AMTIN; Ar) — A(TTY., Ay) as follows for any g € A(TTN.; Ay),b; € Aj,a_; € A
#i(0)(bia-i) = ¢ (a(aia-)) . ) (b))

=¢i< ) q(ai,a,i)éa,-)(bz‘)

ﬂieAi

= ) q(ai,a_;) i(6,,) (i) (6)

ﬂiG.Ai
A distribution g € A(A; X - - - X Ay) is said to be independent if and only if g = q1 ® - - - @ g,
with g; € A(.Ai).
Definition 11 (d-equilibrium). Given ® = (®;)1<i<y, a distribution g € AT, A;) is called a
D-equilibrium if and only if:
viel, Vgied, uil¢i(q) <ui(q). (7)

We recover the equilibrium concepts introduced in the previous sections:

¢ Coarse correlated equilibria are ®-equilibria with ® = ®gxr equal to the set of constant
transformations, i.e., @pxr = {¢x | x € A} where ¢,(a) = x foralla € A.

* Correlated equilibria are ®-equilibria with ® = &y = {¢y | 2 # b € A}, where

e ifc #a,b,
(¢ar(9)). = 40 ifc=a, 4)
q;l + Qb lf C = b
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Lemma 12. The set of ®-equilibria is convex.
Proof. The proof is left as an exercise. ]

Remark 13. A Nash equilibrium is an independent ®-equilibrium. The set of ®-equilibria
contains the set of NE. Since the set of ®-equilibria is convey, it also contains the convex hull of
the set of NE (since the convex hull is the smallest convex set containing the points). However
the convex hull of the set of NE need not contain even the smallest set of ®-equilibria (set of
correlated equilibria). See Greenwald and Jafari (2003) for more details.

2 Learning (Coarse) Correlated Equilibria
Recall from the previous lecture on learning Nash equilibria in zero-sum games via online
learning the following result proved in Freund and Schapire (1996):

In two-player zero-sum games, if each player plays using a no-external regret algorithm,
then the empirical distribution of play converges to the set of minimax equilibria.

In this section, we state mirroring (more general) statements for CCEs, CEs and beyond.

2.1 Convergence to the set of CCEs and CEs

We first state a result for CCEs which appeared in Hannan (1957).

Theorem 14. When all agents in a multiplayer general-sum normal-form game play using a no-
external-regret learning algorithm, their empirical distribution of play converges to the set of coarse
correlated equilibria of the game.

The following result regarding learning CEs appeared in a number of works in the literature
(Foster and Vohra, 1993; Fudenberg and Levine, 1999; Hart and Mas-Colell, 2000, 2001).

Theorem 15. When all agents in a multiplayer general-sum normal-form game play using a no-internal-
regret learning algorithm, then the empirical distribution of play converges to the set of correlated
equilibria of the game.

2.2 No-P-regret learning and convergence to the set of ®-equilibria
2.2.1  Refresher on no-®-regret learning

Recall the repeated (convex) game setting:
* At each time step f, the agent chooses an action x; € A.

¢ At the same time, the environment (forces external to the agent) chooses a convex loss
function ¢; € L (loss is just a negative payoff).

* The agent observes ¢; and pays /;(x;).

In our game setting, the action space is A(.A;). The rest of this section is also valid for any
convex and compact subset of R?. The set L includes convex loss functions with bounded
subgradients.

Learning algorithm. This is an algorithm taking as input a sequence of loss functions ¢; and
producing a sequence of actions x;. Action x; may depend on ¢4, ...,¢;_1, but not on ¢; or later
loss functions. The learner’s objective is to minimize its cumulative loss Y_/_; #;(x;) . The regret
evaluates the performance of a learning algorithm against a given sequence. The simplest type
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is external regret, defined by

T
RegEXT = Slel,l?t Zi(ét(xt) — 4(x)).
x f=

The external regret is the difference between the actual loss achieved and the smallest possible
loss that could have been achieved on the sequence /; by playing a fixed x € A.

An algorithm exhibits no-external-regret for feasible region .4 and set L if there is a function
f(T, A, L) which is o(T) for any fixed A and L, such that forallx € A, t > 1,

T T

ZZ,&(X;}) S ;&(.’X) + f(T,A,L)

t=1

More generally, an agent can consider replacing its sequence a; . ..ar with ¢(a1) ... ¢(ar),
where ¢ is some transformation mapping A to itself. If & is a set of such transformations, we
define an algorithm’s ®-regret as

T
®-Reg’ = sup Y (4(xr) — bi(p(xr))),

PP t=1

and we say that it exhibits no-®-regret if it satisfies forall ¢ € ®, t > 1,

T T
;&(xt) < Y t(p(x)) + g(T, A L®),

=1
where g(T, A, L, ®) is o(T) for any fixed A, L, and .

Recall that we recover external and internal regret by setting the set ® of linear maps as
follows:

¢ External regret is ®-regret with ® = ®Pgxr (set of constant transformations).

¢ Internal regret is ®-regret with ® = Pyyr.

2.2.2 Main theorem

Theorem 16. Let x|, ..., x}; be the strategies played by the players at any time t, and let ®-Reg! denote
the internal regret incurred by player i up to time t. Consider now the average correlated distribution of
play up to any time T, i.e. the distribution %7 that selects a time F uniformly at random from the set
{1,..., T}, and then selects actions (ay, ...,a,) independently according to the xf:

T

Y e @, ®)
t=1

1
=T .
X =7

Then, this distribution satisfies the inequality

@-RegiT

max E [ui(gb(ui),a,i)—ui(ai,a,i)] < T

(PE‘b ngT

9)

Proof. Let ¢ € ®. Using the definition of ¥, linearity of ¢, of the expectation and multi-
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linearity of the utilities, we can write:

E [ui(¢(ai),ai) —ui(ai,a_;)] =

a~xT
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Taking now a maximum over ¢ € ®, and recognizing the definition of ®-regret yields the
desired inequality. O
We discuss a few special cases recovering the main theorems for CCEs and CEs:

* When the set of transformations @ is the set of all constant transformations, the previous
result implies convergence to the set of coarse correlated equilibria.

* When the set of transformations ® is the set of all arbitrary mappings ¢ : A; — A;, the
previous result implies convergence to the set of coarse correlated equilibria.

Define the empirical distribution z; of play through time ¢ as follows:

1 t

Va, € Aj,a_; € A_; = H.A, zt(ai,a_i) = n Z l{ai/‘r:ai} 1{a,i,T:a,l-} p (10)
j#i T=1

where 17, denotes the indicator function, which equals 1 whenever the condition in braces

holds and 0 otherwise.

Theorem 17 (Greenwald and Jafari (2003)). If all players i play according to a ®;-no-regret algorithm,
then the joint empirical distribution of play z; defined in (10) converges almost surely to the set of
D-equilibria.

2.3 Extension to continuous games

Extensions of the results we discussed to continuous games with compact strategy sets have
been investigated in the literature (Stoltz and Lugosi, 2007; Gordon et al., 2008; Hazan and
Kale, 2007).
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