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Lecture 08: Online Learning in Potential Games
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October 09, 2025

Abstract

We introduce the celebrated class of potential games. The second part of the lecture
is devoted to show how to learn approximate Nash equilibria in potential games using
no-regret learning.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs. Research on the topic is also still very active.

1 Preamble

In game theory, each agent has their own utility. The preferences of agents might be aligned
or misaligned. There is a large spectrum of possible interactions, from full cooperation to
full competition. In this lecture, we focus on one of the most fundamental classes of games:
potential games. This class is the canonical class of common interest games. In the spectrum
of games, this is the closest class to the world of optimization.

2 Potential Games

The goal of this section is to define potential games, starting with their simplest instance:
identical-interest games.

2.1 Identical-interest games

All players share a common utility function, i.e.

∀i, j ∈ I , ∀a ∈ A, ui(a) = uj(a) . (1)

Example 1 (Identical interest game). Consider the following 2-player identical interest game:

b1 b2 b3

a1 (0, 0) (1, 1) (3, 3)
a2 (4, 4) (8, 8) (−2,−2)
a3 (6, 6) (7, 7) (2, 2)

This game has two pure NE: (a1, b3), (a2, b2) with payoffs 3 and 8 respectively.

• NE are not unique.

• NE have different payoffs, they are not equally efficient.

• Observe that (a2, b2) is the strategy maximizing the common payoff over A .

Proposition 2. In any identical interest game, if a⋆ ∈ argmaxa∈A u(a) (where u is the common
payoff) then a⋆ is a pure NE.
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Proof. Since a⋆ ∈ argmaxa∈A u(a), we have for all i ∈ I , ai ∈ Ai,

ui(ai, a⋆−i) = u(ai, a⋆−i) ≤ u(a⋆) = ui(a⋆i , a⋆−i) . (2)

Therefore a⋆ is a NE by definition.

2.2 From identical-interest to potential games

Consider the following modified version of the identical interest game introduced in the
previous section.1

y1 y2 y3

x1 (1 + a, 1 + A) (2 + b, 2 + A) (4 + c, 4 + A)
x2 (5 + a, 5 + B) (9 + b, 9 + B) (−1 + c,−1 + B)
x3 (7 + a, 7 + C) (8 + b, 8 + C) (3 + c, 3 + C)

Figure 4: An identical interest game with shifted payoffs.

Observe that this game is strategically equivalent to the previous identical interest game, i.e.
both games have the exact same NE (e.g. relative preferences of players between their actions
remain unchanged even if payoffs might be different).

2.3 Definition of potential games

Definition 3 (Potential game). A game Γ = (I , {Ai}i∈I , {⊓i}i∈I ) is said to be potential if there
exists a function Φ : A → R such that for every action profile a ∈ A, agent i ∈ N, and alternative
action choice a′i ∈ Ai,

ui(a′i, a−i)− ui(ai, a−i) = Φ(a′i, a−i)− Φ(ai, a−i). (3)

We provide a few comments regarding this definition:

• The potential game is not unique in general (just add a constant, only deviations matter).

• In a potential game, it is as if players are playing in a (hidden) identical interest game
with a common payoff Φ (not necessarily known to the players). The relative preferences
of any player are the same as they would be if their utility was simply Φ .

• Any profitable deviation for an agent increases the potential function. This draws an
implicit link with optimization.

Remark 4. There are variants of potential games in the literature (e.g. weighted, ordinal).

Remark 5. Important examples of potential games are congestion games (Rosenthal, 1973). In
fact, Monderer and Shapley (1996) have shown that potential games and congestion games are
isomorphic.

Similarly to the multilinear mixed extension of the utility function, we define the mixed
extension of the potential function, using again the same notation Φ (with the usual abuse of
notation):

Φ(x) := Ea∼x[Φ(a)] = ∑
a=(a1,··· ,aN)∈A

(
N

∏
i=1

xi,ai

)
Φ(a) . (4)

We show that the potential game property of a given finite normal-form game Γ can be
extended to the mixed extension of the game.

1The exposition and the example in this section are inspired from the lecture notes of Marden (2020).
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Lemma 6. For any x ∈ ∏N
i=1 ∆(Ai), and any x′i ∈ ∆(Ai),

ui(x′i , x−i)− ui(xi, x−i) = Φ(x′i , x−i)− Φ(xi, x−i) . (5)

Proof. It suffices to observe that for any i ∈ I , x ∈ ∏N
i=1 ∆(Ai), and any x′i ∈ ∆(Ai),

ui(x′i , x−i)− ui(xi, x−i) = Ea′i∼x′i ,a−i∼x−i
[ui(a′i, a−i)]− Eai∼xi ,a−i∼x−i [ui(ai, a−i)]

= Eai∼xi ,a′i∼x′i ,a−i∼x−i
[ui(a′i, a−i)− ui(ai, a−i)]

= Eai∼xi ,a′i∼x′i ,a−i∼x−i
[Φ(a′i, a−i)− Φ(ai, a−i)]

= Φ(x′i , x−i)− Φ(x) .

2.4 Existence of pure Nash equilibria

Proposition 7. Every potential game admits a pure NE.

Proof. Let a⋆ ∈ argmaxa∈A Φ(a). Then for all i ∈ I , ai ∈ Ai,

ui(ai, a⋆−i)− ui(a⋆i , a⋆−i) = Φ(ai, a⋆−i)− Φ(a⋆i , a⋆−i) ≤ 0 . (6)

Hence a⋆ is a pure NE.

3 Learning NE in potential games

3.1 Repeated game model

Consider a (static) finite normal-form game Γ = (I , {Ai}i∈I , {ui}i∈I ) where |I| = N ≥ 1 .
Each player i has an action space Ai where Ai is a finite set of actions, and a utility function
ui : ∏N

i=1 Ai → [0, 1] that maps an action profile a = (a1, . . . , an) to a utility ui(a).

We denote by x = (x1, . . . , xn) a profile of mixed strategies, where xi ∈ ∆(Ai) and xi,ai is the
probability of strategy ai ∈ Ai. Finally, recall the notation ui(x) = Ea∼x[ui(a)], the expected
utility of player i.

We consider the setting where the game Γ is played repeatedly for T time steps. At each
time step t, each player i picks a mixed strategy xt

i ∈ ∆(Ai). At the end of the iteration, each
player i observes the expected utility he would have received had he played any possible action
ai ∈ Ai. More formally, let

ut
i,ai

= Ea−i∼xt
−i
[ui(ai, a−i)],

where x−i is the set of strategies of all but the ith player, and let ut
i = (ut

i,ai
)ai∈Ai . At the end

of each iteration, each player i observes ut
i . Observe that the expected utility of a player at

iteration t is the inner product ⟨xt
i , ut

i⟩.
Formally, for each player i, the regret after T time steps is equal to the maximum achievable

gain by deviating to any other fixed strategy:

RegT
i = max

xi∈∆(Ai)

T

∑
t=1

⟨xi − xt
i , ut

i⟩.
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3.2 Online gradient ascent for learning in games

At each timestep t ≥ 1:

1. Each agent i chooses their mixed strategy xt
i ∈ Xi := ∆(Ai).

2. Each agent i receives a gradient feedback ut
i = ∇xi ui(xt

i , xt
−i).

3. Each agent i updates their mixed strategy as follows:

xt+1
i := ΠXi

(
xt

i + η ∇xi ui(xt
i , xt

−i)
)

, (7)

where η > 0 is a step size.

3.3 Regret analysis

Most of the results and analysis in the remaining sections of these notes appeared in Anagnos-
tides et al. (2022) for instance.

Proposition 8 (Potential improvement). Suppose that each player i ∈ I runs online gradient ascent
(see section 3.2) with a step size η = 1

L , where L is defined as in Lemma 9 below. Then, for any t ≥ 1,

Φ(xt+1)− Φ(xt) ≥ 1
2η

n

∑
i=1

∥xt+1
i − xt

i∥2
2 ≥ 0. (8)

Proof. The proof follows a standard optimization argument based on the smoothness of the
potential function Φ .

Lemma 9. The multilinear potential extension is L-smooth with smoothness constant L = Φmax ∑N
i=1 |Ai|

where Φmax := maxx∈X Φ(x) and X = ∏N
i=1 Xi .

Proof. The proof is left as an exercise. Hint: Prove that the operator norm of the Hessian of Φ
is bounded by L, using the multilinearity of Φ .

It follows from the definition of the potential function that:

∇xi ui(xi, x−i) = ∇xi Φ(xi, x−i).

As a consequence, the OGD update rule can be equivalently rewritten as follows:

xt+1 := ΠX
(
xt + η∇Φ(xt)

)
.

Using L-smoothness of Φ (Lemma 9), we can write:

Φ(xt+1) ≥ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩ − L
2
∥xt+1 − xt∥2 .

By the characterization of the projection, we have:

∀x ∈ X , ⟨x − xt+1, xt + η∇Φ(xt)− xt+1⟩ ≤ 0 . (9)

Setting x = xt and rearranging the inequality yields:

⟨∇Φ(xt), xt+1 − xt⟩ ≥ 1
η
∥xt+1 − xt∥2 . (10)

Using the above inequality in (3.3) yields:

Φ(xt+1) ≥ Φ(xt) +

(
1
η
− L

2

)
∥xt+1 − xt∥2 . (11)

Setting η = 1/L in the above inequality concludes the proof.
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We now control the regret incurred by each player.

Theorem 10. The regret of each player i ∈ [n] is such that RegT
i = O(

√
T).

Proof. Using Proposition 8 (potential improvement), we have

∥xt+1 − xt∥2 ≤ 2(Φ(xt+1)− Φ(xt))

L
.

Summing this inequality for t = 1, · · · , T, we obtain:

T

∑
t=1

∥xt+1 − xt∥2 ≤ 2
L

(
Φmax − Φ(x1)

)
. (12)

It follows from the OGD per-player update rule (see eq. (7)) and the characterization of the
projection that for all t ≥ 1:

∀xi ∈ Xi, ⟨xi − xt
i , xt

i + η ut
i − xt+1

i ⟩ ≤ 0 , (13)

which can be rewritten as follows:

∀xi ∈ Xi, ⟨xi − xt+1
i , ut

i⟩ ≤
1
η
⟨xi − xt+1

i , xt+1
i − xt

i ⟩ , (14)

The utility deviation under unilateral strategy deviation for player i ∈ I can be upper bounded
as follows:

ui(xi, xt
−i)− ui(xt

i , xt
−i) = ⟨xi − xt

i , ut
i⟩

= ⟨xi − xt+1
i , ut

i⟩+ ⟨xt+1
i − xt

i , ut
i⟩

≤ 1
η
⟨xi − xt+1

i , xt+1
i − xt

i ⟩+ ⟨xt+1
i − xt

i , ut
i⟩

≤
(

Ω
η
+ Umax

)
∥xt+1

i − xt
i∥ ,

where we used (14) in the first inequality and where Ω := maxi∈I diam(Xi), diam(Xi) :=
maxxi ,x′i∈Xi

∥xi − x′i∥ and Umax is a uniform bound on maxi∈I maxt∈{1,...,T} ∥ut
i∥ (independent

of T) which follows from boundedness of the utility functions.

Summing up the above inequality for t = 1, . . . , T and using the path length bound (12)
together with the Cauchy Schwarz inequality, we obtain:

RegT
i = max

xi∈∆(Ai)

T

∑
t=1

⟨xi − xt
i , ut

i⟩

≤
(

Ω
η
+ Umax

) T

∑
t=1

∥xt+1
i − xt

i∥

≤
(

Ω
η
+ Umax

)√
T

√√√√ T

∑
t=1

∥xt+1 − xt∥2

≤
(

Ω
η
+ Umax

)√
2
L
(Φmax − Φ(x1))

√
T ,

which concludes the proof.
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3.4 Convergence to approximate Nash equilibria

Theorem 11. Suppose that each player i ∈ I runs online gradient ascent (see section 3.2) with a
step size η = 1

L . Then for any ε > 0, after T = O(ε−2) iterations, there exists a strategy xt (for
some t ∈ {1, · · · , T}) which is an ε-approximate NE.

Proof. The proof follows similar lines to the proof of the regret bound of Theorem 10. We
provide a complete proof. Using Proposition 8 (potential improvement), we have

∥xt+1 − xt∥2 ≤ 2(Φ(xt+1)− Φ(xt))

L
.

Summing this inequality for t = 1, · · · , T, we obtain:

T

∑
t=1

∥xt+1 − xt∥2 ≤ 2
L
(
Φmax − Φ(x0)

)
.

Thus, there exists t⋆ ∈ {1, · · · , T} such that

∥xt⋆+1
i − xt⋆

i ∥ ≤ ∥xt⋆+1 − xt⋆∥ ≤
√

2 (Φmax − Φ(x0))

LT
.

It follows from the OGD per-player update rule (see eq. (7)) and the characterization of the
projection that:

∀xi ∈ Xi, ⟨xi − xt⋆+1
i , xt⋆

i + η∇xi ui(xt⋆)− xt⋆+1
i ⟩ ≤ 0 , (15)

which can be rewritten as follows:

∀xi ∈ Xi, ⟨xi − xt⋆+1
i ,∇xi ui(xt⋆)⟩ ≤ 1

η
⟨xi − xt⋆+1

i , xt⋆+1
i − xt⋆

i ⟩ , (16)

The utility deviation under unilateral strategy deviation for player i ∈ I can be upper bounded
as follows:

ui(xi, xt⋆
−i)− ui(xt⋆

i , xt⋆
−i) = ⟨xi − xt⋆

i , ui(·, xt⋆
−i)⟩

= ⟨xi − xt⋆+1
i , ui(·, x⋆−i)⟩+ ⟨xt⋆+1

i − xt⋆
i , ui(·, x⋆−i)⟩

≤ 1
η
⟨xi − xt⋆+1

i , xt⋆+1
i − xt⋆

i ⟩+ ⟨xt⋆+1
i − xt⋆

i , ui(·, x⋆−i)⟩

≤
(

Ω
η
+ Umax

)
∥xt⋆+1

i − xt⋆
i ∥

≤
(

Ω
η
+ Umax

)√
2 (Φmax − Φ(x0))

LT
,

where Ω = maxi∈I diam(Xi), diam(Xi) = maxxi ,x′i∈Xi
∥xi − x′i∥ and Umax := maxi∈I ∥ui(·, xt⋆

−i)∥ .

It remains to select T such that the above upper bound is smaller than ε to obtain an ε-NE,
i.e. T = O(ε−2) .

Remark 12. The proof can be adapted to the case of continuous games with concave utilities.

4 Next lecture

2-player zero-sum games, minmax theorem, online learning proof, online learning in zero-sum
games for approximate NE computation.
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