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Abstract

Regret Matching (RM) and Regret Matching+ (RM+) algorithms; Blackwell’s Approcha-
bility theorem.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs.

1 Regret Matching Algorithms

Overview and Intutition. In previous lectures we have seen several families of general
algorithms (FTRL and OMD) for no-regret online learning. At a high-level, these algorithms
obtain their regret guarantees by using a carefully-tuned learning rate to balance the explo-
ration/exploitation tradeoff. In particular, recall that the FTRL algorithm essentially balances
the greedy strategy of choosing the next action whose cumulative loss through the previous
round is minimial with an additional regularization term that ensures stability in the iterates.
Roughly speaking, this strategy is somewhat equivalent to selection actions proportionally to
their (coordinate-wise) cumulative regret through the most recent round.

It turns out that implementing this strategy directly recovers a classical online learning al-
gorithm known as Regret Matching (RM) that is of the most commonly used online algorithms
in practice. The goal of this lecture is to introduce and analyze this algorithm, as well as to
point out its connection to Blackwell approachability.1

Notation. For u ∈ Rn we write [u]+ ∈ Rn to denote the vector with [u]+(i) = max(0, u(i)).

RM Algorithm. We now formally state the RM algorithm and its regret guarantee:

Algorithm 1 Regret-Matching Algorithm (RM) for Experts Setting

Input: Initial x1 ∈ ∆n;
for t = 1, . . . , T do:

1. Play action xt ∈ ∆n, and incur cost ft(xt) = ⟨xt, ℓt⟩. Observe loss vector ℓt ∈ Rn.
2. Construct the instantaneous regret vector rt ∈ Rn given by

rt =
t

∑
k=1

⟨ℓk, xk⟩1 − ℓk .

3. If rt = 0 ∈ Rn, set xt+1 ∈ ∆n arbitrarily. Otherwise update:

xt+1 =
[rt]+

∥[rt]+∥1
. (1)

end for

We have the following regret guarantee for the RM algorithm in the experts setting:

1The content of these notes roughly follows those of Farina (2021).
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Theorem 1. Let {xt} be the iterates of RM (Algorithm 1) in the experts setting with loss vectors {ℓt}.
Suppose each ℓt ∈ [−1, 1]n. Then

RegRM(T) ≤
√

Tn .

Remark 2. We make several remarks about the RM algorithm and its regret guarantee:

• RM is a parameter-free algorithm: In contrast to our previously-inroduced algorithms like
FTRL and OMD, the RM algorithm has no parameter like a stepsize learning rate. Thus,
this parameter-free algorithm is more easily implementable and requires no careful setting of
a stepsize in order to obtain its regret guarantee.

• Dimension dependence in regret guarantee: On the other hand, observe that the bound
on RegBM(T) in the theorem has a

√
n dependence, which is significantly larger (at least in

theory) than the log n dependence for, e.g., the MWU algorithm. Thus, the price of being
parameter-free is paid in the form of this worse dependence in the worst-case regret bound.

Proof of Theorem 1. Our goal will be to track the change in ∥[rt]+∥2
2 over time. For this,

observe for each t + 1 that〈
⟨ℓt+1, xt+1⟩1 − ℓt+1, xt+1

〉
= ⟨ℓt+1, xt+1⟩ · ⟨1, xt+1⟩ − ⟨ℓt+1, xt+1⟩

= ⟨ℓt+1, xt+1⟩ − ⟨ℓt+1, xt+1⟩ = 0 , (2)

where the second equality follows from the fact that ⟨1, xt+1⟩ = 1 since xt+1 ∈ ∆n.

Moreover, assuming rt+1 ̸= 0, then we have by the update rule (1) of the RM algorithm that
xt+1 = [rt]+

∥[rt]+∥1
. It follows from (2) that

〈
⟨ℓt+1, xt+1⟩1 − ℓt+1, xt+1

〉
=

〈
⟨ℓt+1, xt+1⟩1 − ℓt+1,

[rt]+

∥[rt]+∥1

〉
= 0 ,

which further implies that 〈
⟨ℓt+1, xt+1⟩1 − ℓt+1, [rt]

+
〉
= 0 . (3)

Now recall by definition of rt that rt+1 = rt + (⟨xt+1, ℓt+1⟩1 − ℓt+1). Then using the identity
∥[a + b]+∥2

2 ≤ ∥[a]+ + b∥2
2, it follows that

∥[rt+1]
+∥2

2 ≤ ∥[rt]
+ + (⟨xt+1, ℓt+1⟩1 − ℓt+1)∥2

2 (4)

= ∥[rt]
+∥2

2 + 2
〈
⟨xt+1, ℓt+1⟩1 − ℓt+1, [rt]

+
〉
+ ∥⟨xt+1, ℓt+1⟩1 − ℓt+1∥2

2 (5)

= ∥[rt]
+∥2

2 + ∥⟨xt+1, ℓt+1⟩1 − ℓt+1∥2
2 (6)

where the final equality follows from (3). Iterating on this inequality, we find that

∥[rT]
+∥2

2 ≤
T

∑
t=1

∥⟨xt, ℓt⟩1 − ℓt∥2
2 ≤

T

∑
t=1

∥ℓt∥2
2 ≤

T

∑
t=1

n∥ℓt∥2
∞ ≤ Tn . (7)

Finally, observe by definition of RegRM(T) and rT that

RegRM(T) = max
i∈[n]

rT(i) ≤ max
i∈[n]

[rT(i)]+ = ∥[rT]
+∥∞ ≤ ∥[rT]

+∥2 ≤
√

Tn ,

where in the final equality we apply the bound from (7).
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Regret Matching+ Algorithm. A more modern variant of the Regret Matching algorithm is
Regret Matching+ (RM+), which adds an additional thresholding to the instantaneous regret
term rt. In particular, the RM+ algorithm instead defines

rt = [rt−1 + ⟨xt, ℓt⟩1 − ℓt]
+ ,

where it is assumed r0 = 0 ∈ Rn. The algorithm then proceeds as in RM, and selects
xt+1 = [rt]+

∥[rt]+∥1
. It can be shown that RM+ achieves a similar regret bound as RM in Theorem 1.

See Farina (2021) for more details and discussion.

2 Blackwell Approachability

Overview. We now introduce the notion of Blackwell Approachability (Blackwell, 1956), which
is among the earliest formalizations of external regret minimization. As we will see, Blackwell
Approachability is intimately connected to the Regret Matching algorithm.

Blackwell’s Approachability Game. A Blackwell Approachability game is specified by a
tuple (X ,Y , u, S), where X and Y are closed, convex sets, and u : X × Y → Rn is a vector-
valued biaffine function, and S ⊆ Rn is a closed, convex target set. The game proceeds between
two players – a learner and an adversary – as follows:

1. The learner selects xt ∈ X .

2. The adversary selects yt ∈ Y , where yt may depend on the entire history {xt}.

3. The learner incurs loss u(xt, yt) ∈ Rn.

The goal of the learner is to guarantee the average incurred loss converges to the target set S:

min
s∈S

∥∥∥s − 1
T

T

∑
t=1

u(xt, yt)
∥∥∥

2
→ 0 as T → ∞. (8)

Blackwell Approachability and Regret Minimization. Consider an instance of a Blackwell
Approachability game (∆n, Rn, u, Rn

≤0) where u : ∆n × Rn → Rn is given by

u(xt, ℓt) = ⟨ℓt, xt⟩1 − ℓt . (9)

Moreover, define R(T) = minx∈∆n ∑T
t=1⟨ℓt, xt − x⟩. Then the following holds:

R(T)
T

≤ min
s∈Rn

≤0

∥∥∥s − 1
T

T

∑
t=1

u(xt, ℓt)
∥∥∥

2
. (10)

In other words, a successful strategy for choosing the sequence {xt} and achieving the goal
in (8) is also a successful strategy for achieving sublinear bounds on R(T).

In particular, Blackwell’s Algorithm presents a constructive way for achieving the goal in (8)
for genearl Blackwell games. In the case of the instance (∆n, Rn, u, Rn

≤0) described above, this
algorithm reduces exactly to the Regret Matching algorithm. We defer details of this proof and
relationship to Farina (2021) and Blackwell (1956).
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