SUTD 40.616 — Lecture o5 Topics in Games, Learning, and Optimization

Lecture o5: ®-Regret Minimization

Lecturer: John Lazarsfeld
September 29, 2025

Abstract

Beyond external regret: swap regret and the ®-regret framework. Introduction and
analysis of the Blum-Mansour and Gordon-Greenwald-Marks algorithms.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs.

Recap from Lecture o4. In the previous lectures, we have introduced general families of
online learning algorithms and have established analysis frameworks for proving optimal,
sublinear regret bounds in the full or gradient-feedback models, as well as the extension
of these algorithms to the bandit-feedback model. However, these algorithms all minimize
external regret. In this lecture, we focus on more refined comparator classes that correspond to
the stronger notion of ®-regret as well as new algorithms for ®-regret minimization.

1 Beyond External Regret

Comparator Classes as Transformations of Actions. The external regret of an online algo-
rithm A measures the difference between its cumulative incurred cost from playing iterates
{x:}, and the cumulative cost of an optimal fixed action:

T T

Reg,(T) =) fi(xi) —min) _ fi(x) .
t=1 et o
As introduced in Lecture o1, we view the right hand term (which does not depend on the
algorithm’s output) as a minimization over a set of comparators, which in this case is the set of

all actions in X.

We could equivalently view this minimization as over the set of constant maps Pconstant =
{¢x} where for any x € X, we have ¢,(y) = x for all y € X. This leads to equivalence:

T

T
RegA(T):;ft(xt>_ min) fi(¢(x)) -

PEPconstant =1

This leads to the following interpretation of the cumulative cost of the comparator in the
definition of regret: we measure the total cost of the strategy that, at time ¢, instead of playing
action x;, plays action ¢(x;).

This viewpoint of comparators as transformations of actions extends far beyond the set
of constant transformations. For example, suppose ® is some general set of maps of the
form ¢ : X — X. Minimizing over such transformations yields a natural generalization of
comparators and regret. In the following section, we first introduce the special case of linear
transformations and swap regret before introducing the full generalization.”

'The content of these notes roughly follows those of Farina (2024).

SUTD 40.616 — Lecture o5 Topics in Games, Learning, and Optimization

2 Swap-Regret and the Blum-Mansour Algorithm

In this section we start by considering a special (and natural) class of swap transformations,
which leads to the notion of swap-regret.

Swap Transformations as Stochastic Matrices. In the experts setting with X = A, and
fi(x) = (x,4;) for all t, a swap transformation is a linear operator P : A, — A,. In particular,
we represent P as a column-stochastic matrix P = (p(1),..., p(") € R"" where each p{) € A,,.
Let ®gyap be the set

Dgpap = {P = ,...,p(”)) € R"" : each p(i) € Ay}

that contains all such column-stochastic matrices. Observe for fixed n that ®syap is a convex,
compact set. Using the set ®gyap as a comparator class then leads to the following notion of
swap regret:

Definition 1. Let {x;} be the iterates of an online learning algorithm A be an online learning algorithm
on loss functions { f; }. Fix a family of transformations ® such that ¢ : X — X for each ¢ € ®. Then
the swap regret of algorithm A after T rounds is

SwapReg 4(T) = Y _ fi(x;) — min th Pxy) .

t:l PE swap t

Swap Regret as an Upper Bound on External Regret. Suppose that X = A, and each loss
function f; is linear. Then observe that for every x € X, the stochastic matrix P,, = el! € Dgwap
maps every x € A, to the vertex e;. It follows that

min th = min th e;) = min th P, x¢) > min th (Pxy)

XGAnt e;: lG[I’l]t Pg ZG[YI Ped swap 4

where the inequality follows from the fact that {P,, : i € [n]} C ®swap. Thus for any online
learning algorithm A:

T
Reg ((T) =) fi(xs) —min) fi(x) <) fi(x:) — min th (Pxt) = SwapReg 4(T) . (1)

=1 PEQswap ;=

The Blum-Mansour Algorithm for Swap-Regret Minimization. We now present an algo-
rithm of Blum and Mansour (2007) (which we will refer to as BM) for minimizing swap-regret.

Remark 2. We make several remarks about the BM algorithm:

* Overall intuition: Just as in the usual (full-feedback) experts setting framework, at every
time step, the algorithm plays an action x; € A,, incurs a loss f;(x;), observes the function
ft, and uses this information to choose its next action x;1. However, to choose its actions
{x;}, the BM algorithm uses as subroutines n distinct online learning algorithms .A(%)

In particular, we assume each A() also operates in the experts setting: it plays actions

(i) (i)

p;’ € A, at each timestep and receives linear loss functions g, (in this case, these loss
functions gt(l) will be constructed and given as input to each .A() by the outer BM algorithm).

¢ Fixed-point computation: Observe in expression (2) that the algorithm must output x;,4
satisfying the fixed point equation x;11 = Piy1x:11. As P11 is a stochastic matrix, observe
that this is equivalent to finding the stationary distribution of the finite-state Markov Chain
represented by P, 1. Note that such a stationary distribution is guaranteed to exist by
Brouwer’s fixed point theorem or by an eigenvector computation.

SUTD 40.616 — Lecture o5 Topics in Games, Learning, and Optimization

Algorithm 1 Blum-Mansour Algorithm (BM) for Experts Setting

(i)

Input: Initial x; € A; for i € [n], online learning algorithm A(*) with initialization p,” = e;.
fort=1,...,T do:
1. Play actlon xt € Ay, and incur cost fi(x;) = (xt, ;). Observe loss vector ¢; € R".

2. For each i € [n]:
(i) Give to algorithm A() the loss function ggl)(x) = (x, xt(l) Ayp).

(ii) Receive from algorithm A the output pgl €A,
3. Construct the column-stochastic matrix Py, = (pgr)l, ey pgi)l) € Dgap-

4. Select x;41 € A, satisfying the fixed point equation

Xt41 = Pryaxisn . (2)

end for

Analysis of Blum-Mansour: Reducing Swap to External Regret. We state and prove the
following guarantee for the BM algorithm that uses the set of subroutines {.A®1.

Theorem 3. Let {x:} be the iterates of Blum-Mansour (Algorithm 1) on the sequence of linear loss
function { fi(x) = (x,4;)} using online learning algorithms {A(Z)}iG[H] as subroutines. Then

n

SwapRegp, (T) <) Reg 4
i=1
Remark 4. We make several remarks about this swap regret guarantee:

e Instantiation using MWU as Subroutines: If all subroutines .A() are instantiated to be
the MWU algorithm, then recall from Lecture o2 that Reg,,,;(T) < 24/Tlogn with an
appropriately tuned stepsize. This leads to the following concrete corollary:

Corollary 5. Assume the setting of Theorem 3 and suppose each AW is set to MWU with stepsize

7= \/@ Then Reg 4 (T) < 2/Tlogn for each i € [n], and

SwapRegp, (T ZRegMWU() <2n-4/Tlogn.

i=1

The proof of the corollary follows as a direct consequence of the regret bound for MWU
from Lecture 02 and the swap-regret bound of BM stated in Theorem 3.

* Polynomial dimension-dependence: Observe in Corollary 5 that the swap regret guarantee
scales polynomially in n. An active line of research in the past several years has been
devoted to designing different algorithms for swap regret minimization with improved
dependence on the dimension # of the action space (see, e.g., Dagan et al. (2023) and Peng
and Rubinstein (2024))

Proof. The proof of the theorem follows from (i), using the fixed-point property in Step 4 of
the algorithm, and (ii) using the linearity of the loss functions f; to reduce the swap-regret of
BM to the external regret of the individual subroutines A

SUTD 40.616 — Lecture o5 Topics in Games, Learning, and Optimization

For this, fix a comparator P = (p(l), e, p(”)) € Pgwap, and observe that

Il
MH

T
Z — fe(Pxt) _1f(Ptxt) — fr(Pxy) (3)
T
= Y (b, Pixe) — (€1, Pxy) (4)
t=1

I
I MH

(zx? (0, p")) - (th (t,p?) . (5)

Here, the expression (3) follows from the fixed-point update rule in (2) (which also holds at
time t = 1 given the initialization of each pgl) in the algorithm description), and expressions (4)
and (5) follow by the definition and linearity of the loss functions f;.

Moreover, observe for each i € [n] that for any x € A,, the quantity xt(i) - (L, pgi)) is the
(i)

function value g, (p:) as specified in step (2.i) of the algorithm. Thus we can further write:

T T n . . i)
Y file) = filPx) = 12) (8" (") =" (0) (6)

i=1 t=1
n T . ‘ n

< Z (th(l)) — min th > = ZRegA(i)(T) , (8)
i=1 =1 Predn i =

where the final inequality is due to the definition of external regret for the algorithm A(.

Minimizing the inequality over all P € Dswap then yields

n

SwapReg,, (T th Xt) — Pmm th (Pxt) < Z Reg 4 (T) . O

Dowap = i=1

3 ®-Regret and the Gordon-Greenwald-Marks Framework

The Blum-Mansour algorithm for swap-regret minimization can be seen as a special case of
the more general ®-regret-minimization framework introduced by Gordon et al. (2008).

Formalizing ®-Regret. As introduced earlier, we now consider a general family of compara-
tors/transformations ®, where ¢ : X — & for each ¢ € ®. This leads to the general definition
of ®-regret:

Definition 6. Let {x;} be the iterates of an online learning algorithm A be an online learning algorithm
on loss functions { f;}. Fix a family of transformations ®. Then the ®-Regret of algorithm A after T
rounds is

T
O-Reg (T th Xt —(;gg);ft((l’(xt))

Remark 7. We make several remarks about the ®-regret definition:

¢ Assumptions on ®: In Definition 6 we have made no assumptions about the structure of ®.
However, for simplicity we will generally assume that & is a convex and compact subset of
a d-dimensional reproducing-kernel Hilbert space (RKHS). See the discussion in Gordon
et al. (2008, Section 2.1).

SUTD 40.616 — Lecture o5 Topics in Games, Learning, and Optimization

Special cases: As mentioned, external regret and swap regret both arise as special cases
of ®-regret: we recover external regret when ® is the set of constant transformations
{¢x(y) : y = x | x € X'}, and we recover swap regret using the set Ogyap.

Gordon-Greenwald-Marks Framework. For a fixed set ®, the framework of Gordon et al.
(2008) gives a simple method for reducing ®-regret minimization to external-regret minimiza-
tion. We state the steps of this in the following algorithm for the case when X = A,,.

Algorithm 2 Gordon-Greenwald-Marks (GGM) Algorithm for Experts Setting
Input: Initial x; € A,; online learning algorithm Ag over ® with ¢; such that x; = ¢1(x7).
fort=1,...,T do:
1. Play action x; € A, and incur cost f;(x¢) = (x4, {;). Observe loss vector ¢; € R".
2. For the subroutine Ag:
(i) Construct loss function G; : ® — R given by G(¢) := (¢p(x;), ¢;) for ¢ € .
(ii) Give to Ag the loss function G; .
(iii) Receive as output from A the transformtion ¢y € ®.

3. Select x;1 € A, satisfying the fixed point expression

Xep1 = Pr1(xe41) - (9)

end for

Remark 8. We make several remarks about the GGM algorithm:

¢ Blum-Mansour as a Special Case of Gordon-Greenwald-Marks: The Blum-Mansour
algorithm (Algorithm 1) is in some sense a special case of the Gordon-Greenwald-Marks
framework: the matrix P;; constructed using the outputs of the 1 subroutines A in BM
is effectively the output of Ag in the GGM framework. The key characteristic of the GGGM
framework is that it does not specify how to encode the set of transformations ® into a
representation that is conducive to external regret minimization. For the set of stochastic
matrices Qswap, the BM algorithm sidesteps this possible issue by parameterizing the set of
stochastic matrices by n distinct column vectors, and running external regret minimization
over each of the columns. If ® can be represented as a simpmlex, then the external regret
minimization over @ is a certain instance of the experts setting.

¢ Computational Aspects of Fixed-Point Calculation: A second important consideration is
that the GGM framework again requires a fixed point computation (expression (9)) at each
timestep. For some sets of transformations ®, such computations could be straightforward
(e.g., for the case of @gwap, which can be done via an eigenvector computation, or using the
power method), but in general this subproblem can be computationally hard.

Disregarding any computational challenges, the following theorem shows that the GGM
algorithm’s ®-regret guarantee reduces to the external regret guarantee of the subroutine Ag:

Theorem 9. Fix ®, and let {x;} be the iterates of GGM (Algorithm 2) on loss functions { f;} using
subroutine Ae. Let Reg 4 (T) denote the external regret of Ag over the loss functions {Gt} as defined
in step (2.i) of the algorithm. Then

D-Regip(T) = Reg, (T) -

Proof. First, observe from Step 2 of the GGM algorithm that the subroutine A¢ has outputs
{¢+} against the sequence of losses {G;}. Thus using the definition of G;(¢) = (¢(x;), ;) and

SUTD 40.616 — Lecture o5 Topics in Games, Learning, and Optimization

Reg 4, (T) we have

T

(¢r(xe), £ Z (10)

1=

RegA(P(T) =

)
A

Il
[’]H

(xt,) — mm Z = ®-Reg;u(T) . (11)

[
L

Here, the second line follows by the fixed point property of the GGM iterates from (9). O

References

Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine Learning
Research, 8(6), 2007.

Yuval Dagan, Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. From external
to swap regret 2.0: An efficient reduction and oblivious adversary for large action spaces.
arXiv preprint arXiv:2310.19786, 2023.

Gabriele Farina. ¢-regret minimization, 2024. URL https://www.mit.edu/~gfarina/2024/
65890724_L08_phi/.

Geoffrey] Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games.
In Proceedings of the 25th international conference on Machine learning, pages 360-367, 2008.

Binghui Peng and Aviad Rubinstein. Fast swap regret minimization and applications to
approximate correlated equilibria. In Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, pages 1223-1234, 2024.

https://www.mit.edu/~gfarina/2024/6S890f24_L08_phi/
https://www.mit.edu/~gfarina/2024/6S890f24_L08_phi/

	Beyond External Regret
	Swap-Regret and the Blum-Mansour Algorithm
	-Regret and the Gordon-Greenwald-Marks Framework

