
SUTD 40.616 – Lecture 04 Topics in Games, Learning, and Optimization

Lecture 04: Online Learning with Bandit Feedback

Lecturer: John Lazarsfeld
September 25, 2025

Abstract

Introduction to the bandit feedback setting and adversarial Multi-Armed Bandits; the
EXP3 algorithm and a proof of its epected regret guarantee.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs.

Recap from Lecture 03. In the previous lectures, we have introduced general families of
online learning algorithms (FTRL, OMD, and FTPL) and have established analysis frameworks
for proving optimal, sublinear regret bounds in the full or gradient-feedback models. We now
turn toward a weaker feedback model of online learning: bandit feedback. In this lecture we
introduce the bandit convex optimization setting, the special case of (adversarial) Multi-Armed
Bandits (MAB), and we show that a certain instantiation of FTRL adapted to the bandit
feedback model can achieve near-optimal regret bounds in the MAB setting.

1 Bandit Convex Optimization

We start by describing a variant of the Online Convex Optimization (OCO) setting where the
learner only has access to bandit or zero-order feedback about the loss functions.

Bandit Feedback Model. Consider the following online learning setup over a decision space
X : at time t = 1, . . . , T

(1) The learner chooses xt ∈ X .
(2) An adversary selects convex ft : X → R.
(3) The learner incurs and observes the cost ft(xt) ∈ R.

Notice that the only difference in this setup compared to the standard OCO setting presented
in Lecture 01 is the feedback: in the bandit feedback model, the learner only observes its
incurred cost ft(xt), as opposed to the full function ft or the gradient ∇ ft(xt) ∈ Rn. Thus in
general, the learner has less information to use when choosing its next action choice, and we
should intuitively expect weaker regret bounds compared to the full feedback setting.

Special Case: Multi-Armed Bandits. A special case we will be interested in is the Multi-
Armed Bandit (MAB) setting. Here, we now consider a finite action space X = [n] = {1, . . . , n}
of n arms/actions. At each round, the learner chooses an action it ∈ X = [n], and an adversary
chooses a loss vector ℓt ∈ Rn that assigns the loss ℓt(i) to each action i ∈ [n]. The learner
incurs the cost ℓt(it) ∈ Rn and observes this cost value as feedback.

In this setting, it is clear that an adversary can always ensure the learner has a large loss if
the vector ℓt can depend on the choice it. Thus, the learner must use randomization to choose
it. In particular, we will assume the following setup:

Definition 1 (Multi-Armed Bandits). Let X = [n]. At time t = 1, . . . , T
(1) The learner chooses a distribution xt ∈ ∆n and samples it ∼ xt.
(2) An adversary selects ℓt ∈ Rn.

1

SUTD 40.616 – Lecture 04 Topics in Games, Learning, and Optimization

(3) The learner incurs and observes the cost ℓt(it) ∈ R.

In this setting, given the randomized nature of the model, we will measure the performance
of an algorithm A using the following expected regret:

Definition 2 (Expected Regret). Let A be an algorithm for the MAB setting that generates distribu-
tions {xt} on the sequence of loss vectors {ℓt}. Then the expected regret E[RegA(T)] is

E[RegA(T)] = E
[T

∑
t=1

ℓt(it)− min
i⋆∈[n]

T

∑
t=1

ℓt(i⋆)
]

,

where the expectation is taken over the randomness of the samples {it ∼ xt}.

Remark 3. We make several remarks about the MAB setting and the expected regret definition:

• Adversarial Choices of Losses: First, in step (2) of the model, we assume the adversary can
select ℓt depending on the distribution xt but not on the realization it ∼ xt. For simplicity,
we will also assume throughout that ℓt ∈ [0, 1]n has bounded and non-negative entries.

• Expected Cost vs. Random Cost of the Learner: Under the realization of the samples {it ∼
xt}, the learner’s random incurred cost is the quantity ∑T

t=1 ℓt(it). For each t, fixing xt ∈ ∆n and
taking expectation over the sample it ∼ xt, observe that E[ℓt(it)] = ∑n

i=1 xt(i)ℓt(i) = ⟨xt, ℓt⟩.
This is exactly the incurred cost that we measure in the (deterministic) experts setting with
full feedback. Without taking expectation and considering the random incurred cost leads
to a notion of random regret.

2 The EXP3 Algorithm for Adversarial Multi-Armed Bandits

In this section we describe the EXP3 algorithm for the (adversarial) Multi-Armed Bandit setting.
This algorithm was introduced by Auer et al. (2002) and titled exponential weights for exploration
and exploitation. Unsurprisingly, the algorithm is based on the exponential weights method
(MWU), and we attempt to develop some intuition before formally stating the algorithm and
its guarantee.

2.1 Intuition for EXP3

The key challenge of the bandit feedback model is that, after sampling an action it ∼ xt, the
learner only observes a single coordinate of the loss vector ℓt. In contrast, in the full-feedback
experts setting, the learner chooses a distribution xt and can see subsequently observe the
entire vector ℓt.

In the full feedback setting, we’ve seen in Lecture 02 that the FTRL strategy uses the
previously observed loss vectors to keep an estimate of the cost of all actions over the entire
history of the process. When instantiated with the negative entropy regularizer, FTRL becomes
the MWU method, which chooses xt+1 by applying exponentially-weighted updates to each
coordinate i of xt depending on the magnitude of the feedback ℓt(i).

In the MAB setting, the learner does not have enough feedback to make these updates at
every coordinate of the distribution xt+1. However, one natural idea is to instead construct
an estimator ℓ̂t ∈ Rn of the vector ℓt, and to apply the multiplicative updates to xt using the
coordinates of this estimated loss vector.

The EXP3 algorithm precisely employs this strategy using the following estimator ℓ̂t ∈ Rn

with coordinates:

ℓ̂t(i) =

{
ℓt(i)/xt(i) if it = i
0 otherwise

. (1)

2

SUTD 40.616 – Lecture 04 Topics in Games, Learning, and Optimization

A key property of ℓ̂t is that it is an unbiased estimator of ℓt:

Proposition 4. Fix xt ∈ ∆n, and suppose it ∼ xt ∈ [n]. Let ℓ̂t ∈ Rn be the estimator whose
coordinates are given in (1). Then E[ℓ̂t] = ℓt.

Proof. Fix i ∈ [n]. Then by definition of ℓt, we can compute over the randomness of it ∼ xt:

E[ℓ̂t(i)] = 0 · Pr[it = i] +
ℓt(i)
xt(i)

· Pr[it = i] =
ℓt(i)
xt(i)

· xt(i) = ℓt(i) .

2.2 Algorithm Description and Regret Guarantee

We now formally state the EXP3 algorithm for the Adversarial Multi-Armed Bandit setting:

Algorithm 1 EXP3 for Multi Armed Bandits

Input: Stepsize parameter η > 0; Initialize w1 = (1, . . . , 1) ∈ Rn and x1 = (1
n , . . . , 1

n) ∈ ∆n.
for t = 1, . . . , T do:

1. Sample it ∼ xt, and incur cost ℓt(it). Observe bandit feedback ℓt(it).
2. Construct estimator ℓ̂t ∈ Rn with coordinate i ∈ [n] given by

ℓ̂t(i) =

{
ℓt(it)/xt(it) if i = it

0 otherwise
. (2)

3. Update wt+1 ∈ Rn with coordinates i ∈ [n] given by

wt+1(i) = wt(i) · exp(−ηℓ̂t(it)) . (3)

4. Set xt+1 ∈ ∆n to be
xt+1 =

wt+1

∥wt+1∥1
. (4)

end for

Remark 5. We make several remarks about the EXP3 algorithm:

• EXP3 as MWU on Estimated Loss Vectors: As mentioned above, EXP3 is exactly the result
of running the Multiplicative Weights Update (MWU) algorithm for the experts setting on
the sequence of estimated loss vectors {ℓ̂t}. Indeed, the regret guarantee we establish for
EXP3 will be proven using this perspective.

• EXP3 with Uniform Mixing: The original description of the EXP3 algorithm of Auer
et al. (2002) includes a uniform mixing term of the form x̂t+1 = (1 − γ)xt+1 + γ/n for some
γ ∈ [0, 1] (and each it+1 ∼ x̂t+1). Such additional mixing helps obtain high probability
bounds on regret, as opposed to bounds on expected regret (see the remarks below for more
discussion).

We now state the regret guarantee for EXP3:

Theorem 6. Let {it} be the sequence of actions played by EXP3 (Algorithm 1) with setpsize η > 0 on
a sequence of loss vectors {ℓt} in the MAB setting with each ℓt ∈ [0, 1]n. Then for any T ≥ 1, setting

η :=
√

log n
nT , we have over the randomness of the algorithm that

E
[
RegEXP3(T)

]
≤ 2

√
T · n log n .

3

SUTD 40.616 – Lecture 04 Topics in Games, Learning, and Optimization

Remark 7. We make several remarks about the regret guarantee for EXP3:

• Comparison with full-feedback regret bounds: Recall that in the full-feedback experts
setting, MWU (an instantiation of FTRL) obtains regret RegMWU(T) ≤ 2

√
T log n. In the

bandit setting, Theorem 6 shows that one can obtain an expected regret with the same
(optimal) dependence on T, and only an additional

√
n multiplicative dependence on

the size of the action space. In general, this
√

n dependence is tight (see Lattimore and
Szepesvári (2020, Chapter 13)).

Variance of EXP3 can be large: The theorem proves a bound on the expected regret, but it
is well known that the variance of EXP3 can be large. In particular, the random regret of EXP3

can scale linearly in T with at least constant probability (see Lattimore and Szepesvári (2020,
Note 1, Section 11.5)). The uniform mixing component (Bullet 2 of Remark 5) can be used to
obtain tighter, probabilistic bounds on the random regret.

2.3 Proof of Expected Regret Bound

We now develop the proof of Theorem 6. As mentioned, we will analyze EXP3 through the
lens of running the MWU (in the experts setting) on the sequence of estimated loss vectors
{ℓ̂t}. We make this reduction precise as follows:

Reduction to MWU on Estimated Losses. By using the property that each vectors ℓt is an
unbiased estimator of ℓt (e.g., Proposition 4), we establish the following reduction:

Proposition 8. Let {xt} and {it} be the sequence of distributions and sampled actions generated by
the EXP3 algorithm on loss vectors {ℓt}. Then

E
[
RegEXP3(T)

]
= E

[T

∑
t=1

⟨xt, ℓ̂t⟩ − min
x∈∆n

T

∑
t=1

⟨x, ℓ̂t⟩
]

.

Proof. First, let i⋆ ∈ argmaxi∈[n] ∑T
t=1 ℓt(i), and recall for the MAB setting that the expected

regret is given by

E
[
RegEXP3(T)

]
= E

[T

∑
t=1

ℓt(it)−
T

∑
t=1

ℓt(i⋆)
]
= E

[T

∑
t=1

ℓt(it)
]
−

T

∑
t=1

ℓt(i⋆) , (5)

where the second equality follows by the linearity of expectation. We will simplify the two
terms of (5) separately:

• Simplifying the first term of (5): First, observe by the linearity of expectation that

E
[T

∑
t=1

ℓt(it)
]
=

T

∑
t=1

E
[
ℓt(it)

]
=

T

∑
t=1

E
[

Et−1
[
ℓt(it)

]]
. (6)

Here, we write Et−1[·] to denote a conditional expectation on the history of the algorithm
through round t − 1 and use the towering property of conditional expectation1. Then by
definition of the algorithm, we have

Et−1
[
ℓt(it)

]
=

n

∑
i=1

xt(i) · ℓt(i) =
n

∑
i=1

xt(i) · Et−1[ℓ̂t(i)] (7)

=
n

∑
i=1

Et−1[xt(i) · ℓ̂t(i)] = Et−1
[
⟨xt, ℓ̂t⟩

]
. (8)

1For a random variable X, we have E[Et−1[X]] = E[X]. See Lattimore and Szepesvári (2020, Section 11.4).

4

SUTD 40.616 – Lecture 04 Topics in Games, Learning, and Optimization

Here, in the second equality we apply the ubiased estimator property of Proposition 4, in
the third equality we use the fact that, conditioned on the randomness through round t − 1,
the distribution xt ∈ ∆n is fixed and each xt(i) is a constant, and in the final equality we use
the linearity of expectation. Again using the towering property of conditional expectation,
we have

E
[

Et−1[ℓt(it)]
]
= E

[
Et−1[⟨xt, ℓ̂t⟩]

]
= E[⟨xt, ℓ̂t⟩] . (9)

Substituting this into (6) and using the linearity of expectation, we have

E
[T

∑
t=1

ℓt(it)
]
= E

[T

∑
t=1

⟨xt, ℓ̂t⟩
]

. (10)

• Simplifying the second term of (5): For the second term, we have again by Proposition 4

and the linearity of expectation that

T

∑
t=1

ℓt(i⋆) =
T

∑
t=1

E[ℓ̂t(i⋆)] = E
[T

∑
t=1

ℓ̂t(i⋆)
]
= E

[
min
x∈∆n

T

∑
t=1

⟨x, ℓ̂t⟩
]

, (11)

where the last equality follows by definition of i⋆.

Combining expressions (10) and (11), we conclude

E
[
RegEXP3(T)

]
= E

[T

∑
t=1

⟨xt, ℓ̂t⟩ − min
x∈∆n

T

∑
t=1

⟨x, ℓ̂t⟩
]

.

Running MWU on Estimated Losses. The punchline of Proposition 8 is that the expected
regret of EXP3 exactly reduces to the (expected) regret of running MWU on the estimated loss
sequence {ℓ̂t}. We will denote this quantity by R̂MWU(T), where

R̂MWU(T) =
T

∑
t=1

⟨xt, ℓ̂t⟩ − min
x∈∆n

T

∑
t=1

⟨x, ℓ̂t⟩ ,

and thus Proposition 8 says E[RegEXP3(T)] = E[R̂MWU(T)].

Now recall from Lecture 03 that MWU is an instantiation of FTRL for the full-feedback
experts setting using the negative entropy regularizer (Proposition 17 from Lecture Notes 02).
Moreover, we thus have from Theorems 11 and 18 of Lecture Notes 02 that

R̂MWU(T) ≤ η
T

∑
t=1

∥ℓ̂t∥2
∞ +

log n
η

. (12)

In the MAB setting, we assume the true loss vectors ℓt ∈ [0, 1]n have bounded coordinates,
and thus ∥ℓt∥2

∞ ≤ 1. On the other hand, the estimators ℓ̂t in general can have unbounded
coordinates. For example, for i := it, we have ℓ̂t(i) = ℓt(i)/xt(i) ≤ 1/xt(i), which explodes as
xt grows small. Thus, the generic regret bound for MWU in (12) (stemming from the FTRL
analysis) is somewhat unsatisfactory when applying the result to the sequence {ℓt}.

However, it turns out that a more direct analysis of MWU via a potential function argument
yields the following regret bound that is more amenable for this task:

Theorem 9. Let {xt} be the iterates of MWU (Algorithm 1 from Lecture Notes 02) with stepsize η > 0
on a sequence of loss vectors {ℓ̂t} such that ℓt(i) ≥ 0 for all i ∈ [n] and t ≥ 1. Then:

RegMWU(T) ≤ η ·
T

∑
t=1

⟨xt, ℓ̂2
t ⟩+

log n
η

, (13)

where ℓ̂2
t = (ℓ̂t(1)2, . . . ℓ̂t(n)2) ∈ Rn.

Equipped with this result, we can now prove the regret bound for EXP3 from Theorem 6:

5

SUTD 40.616 – Lecture 04 Topics in Games, Learning, and Optimization

Proof of Theorem 6. Combining Proposition 8 and Theorem 9, we have

E
[
RegEXP3(T)

]
= E

[
R̂MWU(T)

]
≤ E

[
η ·

T

∑
t=1

⟨xt, ℓ̂2
t ⟩+

log n
η

]
. (14)

Now by definition of ℓ̂t, we have by applying Proposition 4 and the towering property that

E
[
⟨xt, ℓ̂2

t ⟩
]
= E

[n

∑
i=1

xt(i) · ℓ̂t(i)2
]
=

n

∑
i=1

E
[
xt(i) · Et−1

[
ℓ̂t(i)2]] . (15)

For each i ∈ [n], we can further compute by construction of ℓ̂t that

Et−1
[
ℓ̂t(i)2] = Prit∼xt [it = i] · (0)2 + Prit∼xt [it = i] · (ℓt(i)/xt(i))2 = ℓt(i)2/xt(i) .

Substituting this back into (15), we find

E
[
⟨xt, ℓ̂2

t ⟩
]
=

n

∑
i=1

E[xt(i) · (ℓt(i)2/xt(i))] =
n

∑
i=1

E[ℓt(i)2] ≤ n , (16)

where the final inequality comes from the assumption that each ℓt ∈ [0, 1]n. Thus the bound
in (14) becomes

E
[
RegEXP3(T)

]
≤ η · Tn +

log n
η

.

Setting η :=
√

log n
nT then yields E

[
RegEXP3(T)

]
≤ 2

√
T · n log n.

References

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic
multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

6

	Bandit Convex Optimization
	The EXP3 Algorithm for Adversarial Multi-Armed Bandits
	Intuition for EXP3
	Algorithm Description and Regret Guarantee
	Proof of Expected Regret Bound

