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Lecture 03:
Online Mirror Descent and Follow-the-Perturbed-Leader —
No-Regret via Penalty and Perturbation

Lecturer: John Lazarsfeld
September 23, 2025

Abstract

Online Mirror Descent (OMD) and its analysis, equivalence between OMD and FTRL
on linear losses, Follow-the-Perturbed-Leader (FTPL) and its analysis, relationship between
FTPL and FTRL.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs.

1 Online Mirror Descent

Recap from Lecture 02 and Overview. In the previous lecture, we introduced the Follow-
the-Regularized-Leader family of online learning algorithms, and we proved a general regret
bound that highlighted the importance of an algorithm’s stability in this setting. The goal
of this lecture is to introduce a second canonical family of algorithms called Online Mirror
Descent (OMD), which achieves stability via penalty function (as opposed to regularization).
We will motivate, introduce, and derive a similar general regret bound for this family, as
well as discuss its connection with FTRL. Finally, we will introduce and analyze yet a third
family of algorithms called Follow-the-Perturbed-Leader (FTPL), which achieves stability (in
expectation) via random perturbations.

1.1 Motivating OMD: Stability via Penalty

Before introducing the general Online Mirror Descent family, we build some intuition using
our previous analyses of Online Gradient Descent and the FTRL family. Suppose an instance
of the general Online Convex Optimization setting with loss functions {f;}. At time ¢, an
online learning algorithm outputs an iterate x; € A and incurs a loss of f;(x;). How should
the algorithm choose its iterate x;,1?

Exploitation via First-Order Approximation. As the learner is unaware of f;1 when choos-
ing x;y1, the algorithm must balance the exploration/exploitation tradeoff (similarly as in
OGD and FTRL). For this, under the hypothesis that f;,; is similar to f;, one natural strategy
is to choose x;1; to minimize the most recently observed loss function f;. In particular, by
convexity of f; (and assuming differentiability), the learner can attempt to minimize the
tirst order approximation of f; around x;, which is always a lower bound on f;. Specifically,
define f;(x) = fi(x¢) + (Vf(x;),x — x). Then by the first-order convexity inequality, we have

fi(x) > fi(x) forall x € X.

Exploration via Penalty. On the other hand, as shown in the analysis of FTRL, in the online
learning setting, the regret of an algorithm is related to the stability of its iterates. In particular,
regret can scale with the path-length of the iterates Y[ ||x; — x;;1]|, and thus an algorithm
should additionally choose x;1 not far from x;. In FTRL, this property was enforced implicitly
via the use of a (strongly-convex) regularizer. On the other hand, we could also imagine
enforcing stability directly into an objective function via a penalty function like ||x — x;41]|.
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Combining the Pieces. Combining these ideas (and in particular, using a squared Euclidean
norm penalty term) leads to the following type of update rule at time t + 1:

[z 1 2
X = argmin X))+ —|x—x . 1
e s=argmin {fi(x) + 51— B (™

Here, similar to OGD and FTRL, the stepsize parameter 77 > 0 is used to balance the magnitudes
exploration and exploitation terms.

Now substituting the definition of f;(x) into (1), observe that we can rewrite x;1 as:

v = argmin {fi(x) + (Vi(), ¥~ x) + 5.~ %3} @
= argmin {29(Vfi(x1),x — x:) + |l — x|} (3)
xeX
= argmin {49 fulx)|3-+ 29(V fi(w), x = ) + | = x]} @)
= argmin {|}x = (x =y Vfi(x:)) |3} (5)
xeX
= HX <Xt — 17Vft(xt)> . (6)

In other words, the strategy used in (1) exactly recovers the update rule for Online Gradient
Descent from Lecture o1! In general, given the geometry of the decision space X, we could
also imagine using other types of norms as penalty functions. This is the precisely recipe for
the Online Mirror Descent family. In particular, Online Mirror Descent replaces the ¢3 penalty
|x — x¢||3 with the Bregman divergence with respect to a function . For this, we first recall
some useful definitions from convex analysis:

Convex Analysis Refresher: Bregman Divergences. We recall definitions and properties
of Bregman divergences (more details are given in (Orabona, 2019, Section 6.3)). Throughout,
suppose X C R is convex and compact, and i : X — R is strictly convex and differentiable.

Definition 1. The Bregman Divergence with respect to ¥ is the function Dy : X X X — R, where for
x,x € X:
Dy(x,x") := ¢(x) = 9(x) = (Vy(x'), x =) .

In words Dy (x, x’) is the difference between 1 (x) and the first-order approximation of ¢ at
x’. The following properties additionally hold:
Lemma 2. For x,x" € X: Dy(x,x") > 0. However, in general Dy(x,x") # Dy(x', x).
Lemma 3 (Relationship with Strong Convexity). If ¢ is a-strongly-convex with respect to || - || for
some o > 0, then for any x,x" € X:

14
Dy(x, ) > 5 lx = 2|

Lemma 4 (3-point Identity). Let x,y,z € X. Then the following identity holds:
(Vip(x) = Vp(y),z = x) = Dy(z,y) — Dy(z,x) = Dy(x,y) -

We also have the following common examples of Bregman Divergences:
Example 5. Let »(x) = 1||x||3. Then Dy(x,x') = 1||x — x'|3.

Example 6. Let X = A, and let ¢ be the negative entropy function (x) = Y1 ; x;log x;. Then
Dy(x,x") = iy x;log 3}, which is also known as the KL-Divergence KL(x, x).
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1.2 OMD Algorithm and Regret Guarantee

We now formally state the Online Mirror Descent family of algorithms. In particular, similar
to the FTRL family, each choice of ¢ corresponds to a different instantiation of OMD.

Algorithm 1 Online Mirror Descent (OMD) for OCO Setting

Input: Initial x; € &; strictly convex ¢ : X — R. stepsize parameter 17 > 0.
fort=1,...,T do:
1. Play action x; € X, and incur cost f;(x;). Observe gradient feedback V f;(x;) € R".
2. Update x;41 € X by

e 1= {(V (), 2) + Dyl )} )

end for

Remark 7. We make several remarks about the OMD algorithm:

¢ Standard vs. Lazy OMD: There is sometimes a distinction between standard OMD and a
“lazy” variant. We focus here on the standard variant and defer more details on the lazy
variant to Hazan et al. (2016, Section 5.3).

* On gradient feedback model: In the algorithm, we assume at each round that the learner
observes feedback in the form of the gradients V f;(x;) . Alternatively, we can assume the
learner observes the full function f; and is able to subsequently compute V f;(x;).

We now state the regret guarantee for OMD.

Theorem 8. Let {x;} be the iterates of OMD (Algoritm 1) using ¢ : X — R that is 1-strongly-convex
with respect to || - || and stepsize 1 > 0 on any sequence of convex and differentiable losses { f;}. Then
forany T > 1, the following bounds hold:

(1) Suppose for B > 0 that x, € X satisfies Dy(x,x1) < B for all x € X. Then:

T
B
Regopp(T) < g Z IV fi(xe) |12 + ; .
=1

(2) Moreover, suppose for L > 0 that |V fi(x;)||. < L for all t > 1. Then setting 17 := \/ 51
Regypyp(T) < LVBT. 8)

Remark 9. We make several remarks about the regret bound for OMD in Theorem 8

¢ Similarities with OGD and FTRL bounds: At first glance, the bound in Part (1) appears
more similar to the OGD regret bound in Lecture o1 than the FTRL regret bound from
Lecture o2. In particular, observe that the bound in (1) does not directly depend on the
stability or path length of the iterates Y ,_; ||x; — x¢+1]|. On the other hand, we assume that
1 is strongly-convex, and this property is used to establish the multiplicative factor of # in
the first term (recall that strong-convexity was also needed to prove the 7-stability of the
iterates in FTRL). Thus intuitively, i can be viewed as the regularizer in the FTRL algorithm
(this is made more precise in the next section).

* On the constant B: Notice that the constant B depends on the initialization x; € X. While
this is a slight abuse of notation, the key point is that, depending on ¥, the Bregman
divergence Dy can grow arbitrarily large, even if X" is bounded.
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1.3

Proof of OMD Regret Bound

Proof. We will prove Part (1) of the theorem. Part (2) is straightforward and identical to the
proofs of OGD and FTRL. The proof of the Part (1) will be developed in several parts:

(i)

(ii)

(iii)

Setup using linearized losses:
By the convexity of the loss functions, recall that it suffices to upper bound the regret
Regyp (T) with respect to {f;} by the regret using the linearized losses {(V fi(xt), x) }:

T

Regop(T) = %gl{éft(xt)—ft(x)} < min{ Yy (VAix)x-x}.

t=1

Establish the “Mirror-Descent Lemma” at round ¢:
Fix t. We will derive an upper bound on the quantity (V f;(x), x; — x*), where we fix
x* € argmin,_, Y1 (Vfi(xt), x¢ — x). For this, observe first that we can write

(Vfie(xt), x —x%) = (Vfe(xe), 241 — x°) + (Vfe(xe), X¢ — xp41) (10)
< (Vfelxe), xe1 — 3) + [V frlxe) [l [xe — xeqa | (11)

where the final line comes from the generalized Cauchy-Schwarz inequality. Our goal is
now to bound the term (V f;(x¢), x1+1 — x*), and we will do this by using the optimality
of x;;1 under the OMD update rule.

For this, we let F; : X — R be the function
1
F(x) = (Vfi(xt), x) + ng,,(x,xt)

= (VA(x),x) + f](av(x) () — (V) x— 1),

where the second equality comes from the definition of Dy(x,x;). Now observe by
definition of F; that under the OMD update, x;,; = argmin,_, F;(x). Thus, by the
optimality of x;+1, we have by first-order optimality conditions that (VF(x41), x* —
Xt+1) > 0, and using the definition of VF;(x;41), we have

(Vfi(xe) + %(vw(le) = Vip(x)), x* —x441) =20,

which by rearranging implies that

(Vfe(xe), xe1 — x7) < —(Vip(x11) — Vp(xe), X — xp41) (12)

(Dlp(x*, Xt) — Dlp(x*, Xt+1) - Dlp(xH—l/ xt)) ’ (13)

S|,k

where in the final equality we apply the three-point identity of Lemma 4.
Now substituting (13) back into expression (9), we have

1 1
(Vfi(xi), 2 —x*) < —(Dy(x*, xt) — Dyp(x*, x¢41)) —5D¢(xt+1,xt)+HVft(xt)H*th—xtHH.

(14)

=

Apply strong-convexity of i to simplify:
Under the assumption that ¢ is 1-strongly convex, we can further simplify the latter to
terms of (14). For this, applying Lemma , we have for each ¢ that

1
e L x?

4
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It follows that we can write

1 1
_ﬁDw(xtH/xt) H IV ()l «llxe = xea || <V fe(xee) [[ellxe — x| — %thﬂ - xtHz

(15)

< SNV - (16)

N[

where in the final inequality we apply the identity az — %22 < g—z fora,b >0and z € R.

Substituting into (14), we conclude for all ¢ that

(V)0 = %) < Z(Dy(x,31) = Dyl x0)) + 2NVEAEIE. ()

|

(iv) Sum and simplify:
The final remaining step to bound Reg,(T) is to sum the terms in (17) over all ¢t € [T].
For this, applying the inequality from (17), we find via telescoping that

Regoup(T) < YV filxt),xt =) 18)
=
T
<y ;(Dw(x*f xt) — Dy(2*, 2,41)) + gHVft(xt)Hi (19)
t=1
Dy (x*,x1) — Dy(x, .
< DEI) DS ) L 9l (20)
Dy (x*, L
< Do) 1y sz, @)
Ui t=1

where in the final inequality we use the fact (Lemma 2) that Dy (x*, x741) > 0.
Finally, recalling the assumption that x; € A’ satisfies Dy (x*, x1) < D concludes the proof.
O

1.4 Geometric Perspective of OMD and Relationship with FTRL

In this section, we describe a more geometric perspective for OMD using the machinery of
Fenchel conjugates and duality. We then discuss the relationship between OMD and FTRL.

Convex Analysis Refresher: Fenchel Conjugates. Here we review the notion of Fenchel
conjugates. See Orabona (2019, Section 6.4.1) for more details.

Definition 10. Let i : X — R be strictly convex and differentiable. Then the convex (Fenchel)
conjugate of ¢ is the function ¢* : R" — R given by
¢*(y) = sup,ex (v y) —9(x) .

One special class of regularizers ¢ are those that satisfy the following Legendre property:

Definition 11. Suppose i : X — R is strictly convex and differentiable. Then 1 is a Legendre
function if ||Vi(x)|| = o0 as x — 0X, and Vi : X — range Vip(X') C R”" is a bijection.

In particular, if ¢ satisfies the Legendre property of Definition 12, then the following holds:
Lemma 12. Suppose  : X — R satisfies Definition . Then V¢* = (V) L.
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Geometric view of Online Mirror Descent. Consider the iterates {x;} of running OMD with
strictly convex ¢ : X — R on loss functions {x;}. For simplicity’ , we will assume that ¥ is
Legendre and that all x; € int X'. Then by definition of Dy, observe for t > 1 that we have

Xia1 = argmin (V fy(x), ) + }](sv(x) — () — V() x — )

xeX

= argmin (7 V fi(x¢) = V§(x1), 1) + ¢(x) .

xeX
By the assumption that x; € int X, the first-order optimality conditions of x;;; imply

Vy(xir1) = Vp(xr) = nVfi(x) = xe0 = VY (Vp(x) —nVfi(x)) . (22)

Here, the implication comes from the fact that Vip* = (V) ~! when ¢ is Legendre (Lemma 1.4).
Thus expression (22) shows that the OMD update can be viewed as a certain online gradient
descent in the dual space of gradients: first, Vi) maps the primal iterate x; to this dual space,
and after taking a gradient step —#V f;(x¢), the inverse map V¢* brings the dual iterate back
to the primal space.

Online Mirror Descent and FTRL on Linear Losses. In the case of linear loss functions, this
geometric view of OMD coincides with that of FTRL. For this, assume the experts setting with
loss vectors {/;}. Then observe that under FTRL with Legendre regularizer ¢, for all > 1:

a 1

X¢41 i= argmin <x, Y. €k> + —p(x) .
XEX =1 U)

For simplicity we again assume that each x;,1 € int X. Thus again by first-order optimality

conditions, and letting g; = —7 th;ll ly, then

Vip(xir1) =181 = x40 = V(g —nlt), (23)

where the implication again follows by Lemma . For OMD in the experts setting (technically,
with linear loss functions f;(x) = (x, ¢;)), then under the assumption x; := min,cy ¢(x), the
update in expression (22) means

t
V(xi1) = -1 Z by = —ng1 = X1 = VP (g —1ls) .
k=1

Thus in the linear experts setting, the iterates of OMD and FTRL coincide.

For more detailed discussion on the geometric interpretation and connection between OMD
and FTRL, see (Orabona, 2019, Sections 6.4.2 and 7.3.1).

2 Follow-the-Perturbed-Leader

We have seen thus far the family of Follow-the-Regularized-Leader algorithms (Lecture 02)
and the family of Online Mirror Descent algorithms (this lecture), and for both families
we have derived general regret bounds that, under mild boundedness assumptions, can be
instantiated to obtain O(1/T) regret guarantees. The key tool used by both algorithms is to
employ an explicit regularization or penalty function to deterministically enforce the stability
of an algorithm.

In this section, we introduce a third family of algorithms called Follow-the-Perturbed-Leader
(FTPL). FIPL is similar to FTRL in that it extends the leader-based approach of FIL, but now
by adding random perturbations to the greedy objective function. For simplicity, we will focus
in this section on the experts setting (e.g., linear losses over the simplex):

'See (Orabona, 2019, Sections 6.4.2 and 7.3.1) to generalize the argument beyond the Legendre and interior
iterates assumption
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Algorithm 2 Follow-the-Perturbed-Leader (FTPL) for Experts Setting

Input: Initial x; € A,; perturbation distribution D.

fort=1,...,T do:
1. Play action x; € A,, and incur cost (x¢, ¢;). Observe loss vector ¢; € R".
2. Sample p; ~ D (independently for each t). Select x;,1 € A, by

t
Xt+1 € argmin <x, Z b + pt> , (24)
k=1

xeA,

end for

Remark 13. We make several remarks about the FTPL algorithm:

Choice of noise distribution: As stated, we assume the noise distribution X" is some general
(but fixed) distribution. For simplicity, in these notes we will mainly consider the case where
D is a uniform distribution over some subset of R”. However, studying the behavior of
FTPL with other classes of distributions is an active area of research.

Tiebreaking assumptions: Notice in (24) that we do not assume x;; is the unique element
of the argmin set. In general, given that the optimization problem in the expression is
linear, and due to the fact that we assume X = A, the argmin set will not necessarily be a
singleton, and in general each x; 1 may be a vertex of A,. We will assume there exists some
arbitrary tiebreaking rule for selecting the exact iterate x;,1 in the case where the argmin
set contains multiple elements.

Adversary model and expected regret: Given the randomness of the algorithm, observe
that each x;,1 is now a random variable whose distribution depends on D. For this reason,
we will primarily be concerned with expected regret bounds (e.g., bounds on the quantity
E[Reg p; (T)], where the expectation is taken over the randomness of the sequence {p:}).
Moreover, we will assume in the online learning setup that the adversary has knowledge of
the distribution D, but not on the realization of the sample p; ~ D at each round.

We will prove the following expected regret guarantees for FTPL:

Theorem 14. Let {x;} be the iterates of FTPL (Algorithm 2) with perturbation distribution D with
loss functions { f;(x) := (x, £;)}. Then for any T > 1, the following bounds hold:

(1) Over the randomness of {p;} and letting p ~ D:
T
E [Regprp, (T)] < ) E [(€rxi — xp11)] +2E [[lplle] -
t=1

(2) If D = Unif([0,1/€]") for € > 0, then over the randomness of {p; }:

2

T
E [Regprp, (T)] <€) I llollell + = -

t=1

(3) If in addition ||¢;]|y < G and ||¢;||l < L forall t > 1 and G,L > 0, then setting € := \/ =27
E [Reg;;p (T)] < VBGLT .

2.1 FTPL Expected Regret Analysis

We now develop the proof of Theorem 14. The strategy is to re-use some of the tools and
approaches for the FTRL regret bound from Lecture o2 (in particular, the regret guarantees for
FTL and the coupling between FTL and FTRL).
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Recap of FTL Regret for Experts Setting. We first recall the general regret bound for Follow-
the-Leader (FTL) derived in Lecture 02. In particular, in the experts setting, we have the
following bound (see Lemma 9 of Lecture 02).

Proposition 15. Let {x;} be the iterates of FTL with loss functions { f;(x) := (x, ¢;)}. Then
T

T
Regpr (T) < ;ft(xt> — fi(xes1) = Z<£t:xt — X¢41) -

t=1

Note that the statement of this proposition differs slightly from that of Lemma g in Lecture
02. The key difference is that Lemma 9 in Lecture o2 further simplifies the statement of the
proposition above by applying the generalized Cauchy-Schwarz inequality at each term in the
summation. For the proof of FTPL, we will find it more convenient to work with the more
general statement above.

General Bound on Expected Regret of FTPL. Similar to FTRL, we can then derive the
following expected regret bound for FIPL using Proposition 15:

Proposition 16. Let {x;} be the iterates of FTPL with perturbation distribution D on loss functions
{fi(x) := (x,€;) }. Then over the randomness of {p:}, and letting p ~ D:

T
E [Regprp, (T)] < ;E [(Ce,xt = xe41) ] +2-E [[lp]leo] -

The proof of Proposition 16 follows similarly to that of Lemma 12 in Lecture o2 for FTRL.
In particular, the strategy is to define the shifted set of loss functions { f;} by

]il(x) = (x,p)
fro1(x) := fei(x) = (x, &) fort > 1,
where p ~ D. Then, we can compare the iterates {%;} produced by FTL on the sequence { f;}

to the iterates {x;} produced by FTPL on {f;}, and we can apply (in expectation) the general
regret bound for FTL from Proposition 15. The full details of the proof are left as an exercise.

Expected Regret of FTPL Under Uniform Perturbations. We now prove the main regret
guarantee of FIPL using uniform noise (Part (2) of Theorem 14). We restate this guarantee in
the following lemma (and note that Part (3) follows as a direct consequence):

Lemma 17. Let {x;} be the iterates of FTPL with perturbation distribution D = Unif([0,1/¢€]") fora
fixed € > 0 on loss functions { f;(x) := (x, £;}. Then over the randomness of the perturbations p; ~ D:

2

T
E [Regrp (T)] <e Z [€¢]]1 + .
=1

Proof. By Proposition 16, we have for any fixed distribution D (and for p ~ D) that

T
E [RegFTPL(T)] < ;E [@trxt - xt+1>] +2-E [HPHoo] . (25)

Under the setting D = Unif([0,1/€]"), we will bound each term of (25) separately:
(i) Bound on E[||p||c]:

By definition of D := Unif([0,1/¢€]"), for p ~ D, we have |p(i)| < 1/¢ for all i € [n]
deterministically. Thus

2E[[lpllo] < (26)

oN
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(ii) Bound on E[{¢;, x; — x;41)]:

Fix t > 1. We will prove that E[(¢;, x; — x;11)] < ||¢¢]|1 - € under the randomness of
pt ~ Unif([0,1/€]"). For this, we introduce the following pieces of notation: first, let
L= Z,t(;ll ly. Then define

F =L +Pt e R"
Fy = L+ 4, + o1 € R" (27)
©r ={L+[0,1/¢]"}N{L+ ¢+ [0,1/€]"} CR".

Under the FTPL update rule, observe that we can then write x; € argmax, ., (F;, x) and
Xp41 € argmaXx, (Fr41,x). In particular, F; and F;; are random variables (where the
randomness comes from p; and p;1, respectively), and thus the distributions of x; and
x¢4+1 are completely determined by the distributions of F; and F;1, respectively.

Moreover, under the randomness of p; and p;1, the following properties hold (which
follow from the structure of D = Unif([0,1/€]") and the independence of p; and p;1:

e Property (a): F; ~ Unif({L; 4+ [0,1/€]"}) and Fiyq ~ Unif({L; + ¢; + [0,1/€]"}).
* Property (b): Pr[F; € O] = Pr[Fi41 € ©O4].
« Property (c): Pr[F; ¢ ©] < Y0, Pr[Fyq(i) ¢ ©(i)] < iy L0 = e [|4;])1.

Using the definition of conditional expectation, can then write:

E[(xt,ﬁtﬂ = E[<x1»,€t>|Ft € @t] . PI'[Pt € @t] -+ E[(xt,EtHFt ¢ ®t] . PI‘[Pt ¢ ®t] .
and also:

E[(xt11,4)] = E[(xt11, £i) |[Fry1 € O - Pr[Fry1 € Of) + E[(xs41,41)|Fri1 & O] - Pr[Friq ¢ O]
= E[<Xt, EtHFt € @t] . PI‘[Ff S @t] + E[<Xt+1, &>|Ft+1 ¢ @t] . PI'[FH_l ¢ @t] .
Here, the final equality comes from the fact that Pr[F; € ®;] = Pr[F,;; € O] from Prop-
erty (b). Thus, the random variables x; conditioned on F; € ®; and x;;1 conditioned on
Fi+1 € O, have the same distribution. Subtracting E[(x; — x;11, {;)] and using properties
(b) and (c) above, we find
E[<xt - xt+1,ft>] = (E[<xt/£t>|1:t ¢ ®t] - E[<xt+1/€t>|Pt+1 ¢ @t]) 'PI'[Ft ¢ ®t]
< |[lt]|eo - Pr[F; ¢ O]
< e[|l €2l - (28)

(iii) Combining the pieces:

Combining expressions (26) and (28) and summing over all t € [T], we conclude

T
2
E[Regprp, (T)] SGZH&I|OOH&H1+E . O
=1
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