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Lecture o2:
Follow-the-Regularized Leader — No-regret via Regularization

Lecturer: John Lazarsfeld

September 18, 2025

Abstract

Family of leader-based algorithms, analysis of Follow-the-Regularized-Leader (FTRL)
via coupling with Be-the-Leader and Follow-the-Leader, Multiplicative Weights Update
(MWU) as FTRL with entropic regularizaation, and lower bounds for online learning.

Disclaimer: These lecture notes are preliminary notes that will evolve and will be updated over time,
this is the first iteration of the course. The treatment is not comprehensive but focuses on some of the
main ideas with accompanying proofs.

1 Warmup: Multiplicative Weights Update

Recap from Lecture o1. In the previous lecture, we introduced the general Online Convex
Optimization setting (as well as the special experts case) and motivated using external regret as
a performance metric. We also introduced the fundamental Online Gradient Descent (OGD)
algorithm and proved that it obtained the sublinear regret bound Reg,p,(T) < O(V/T). In
this lecture, we begin by introducing a second, canonical online learning algorithm called
Multiplicative Weights Update (MWU), which we describe for the experts setting.

MWU Algorithm. In the experts setting, the MWU algorithm chooses its iterates by up-
dating the n coordinates of its next distribution choice x;.; in a multiplicative fashion, with
multiplicative factors depending on the most recent loss value of the n coordinates.

Algorithm 1 Multiplicative Weights Update (MWU) for Experts Setting

Input: Initial distribution x1 = (1/n,...,1/n) € A,; stepsize parameter 7 > 0.
fort=1,...,T do:
1. Play action x; € A,, and incur cost (¢;, x;). Observe the feedback ¢; € R".
2. Update x;1 € A, by

for(i) o () exp(i(i)

. Y xe(j) - exp(—=14:(f)) fori e [n]. (1)

end for

Remark 1. We make several remarks about the MWU algorithm:

¢ Simlarities with OGD:
While at first glance the update rule of MWU appears much different than that of Online
Gradient Descent, both methods share the same algorithmic principal: the next action choice
x¢4+1 should update its coordinates in a greedy manner based on the most recent feedback.

Similar to OGD, for MWU, the aggressiveness of this greedy strategy is controlled by the
stepsize parameter 7. Larger settings of # correspond to more aggressive updates (more
exploitation) and smaller settings place less influence on the most recent feedback (more
exploration).

¢ Historical notes:
The MWU algorithm (or variants) have been (re)-discovered in many related contexts. The
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variant stated in Algorithm 1 is sometimes known as Hedge and originates with Freund and
Schapire (1997). The algorithm is also known as the Exponential Weights method, and has
had many applications across online learning, and ML theory more broadly. See also Arora
et al. (2012) for more historical notes.

* Regret guarantees and analysis:
Given the previous point, it is no surprise that MWU has strong performance guarantees in
the online learning setting. Informally, MWU has the following regret guarantee:

Theorem. In the experts setting, assuming bounded loss vectors and with an appropriate setting of
1, MWU obtains regret Reg, v (T) < O(y/logn - T).

There exist multiple proofs of this result, many of which are based on the use of a suitably-
defined potential function. However, these more direct proofs can feel opaque with building
a better intuition for why MWU should be an effective online learning algorithm.

Focus of lecture: MWU as an instantiation of Follow-the-Regularized-Leader. In light of
the final point of Remark 1, note that it turns out that MWU is a special instantiation of a
more general family of algorithms called Follow-the-Regularized-Leader (FTRL). Deriving regret
bounds for the FTRL family gives a more intuitive understanding for MWU’s behavior, and
thus in this lecture the goal is to introduce and analyze this more general family. The proof of
MWU'’s sublinear regret bound will follow as a corollary.

2 The Follow-the-Regularized-Leader Family

In this section, we now introduce and analyze the Follow-the-Regularized-Leader (FITRL) family
of online learning algorithms. FTRL algorithms are one of the workhorse methods of online
learning, and under suitable parameter setings, this family obtains sublinear regret guarantees.
The key algorithmic component used by FTRL is reqularization, which ensures the algorithm’s
iterates are sufficiently stable.

Overview of remainder of the lecture. We will proceed to introduce FTRL and derive a
full proof of its regret bound that emphasizes the importance of such stability for obtaining
sublinear regret in the adversarial OCO setting. In the subsequent section, we will then show
how MWU is a particular instantiation of FTRL using entropic regularization. This provides
an alternative and perhaps more intuitive proof of MWU’s O(+/T) regret bound. In Section 3,
we conclude the lecture by presenting information theoretic lower bounds for online learning
that scale like Q(+/T). Together, this implies for general online convex optimization that the
regret guarantees of FTRL, MWU, and OGD are tight in their dependence on T.

2.1 FTRL Update Rule.

Reminders on assumptions of OCO setting. Throughout, we will assume the general OCO
setting introduced from Lecture o1. In particular, we will assume a compact convex decision
set X C R", and we assume each loss function f; : X — R is convex and differentiable. We
assume the full feedback setting where the learner observes f; after choosing its action x;.

FTRL is a family of algorithms instantiated with a strictly convex regularizer R : X — RR.
At each timestep, the FTRL update rule chooses the action that minimizes the sum of the
previously-observed loss functions up to the current round, plus the addition of the regularizer.
Stated formally:

Remark 2. We make several remarks on the regularizer R in the FTRL family:
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Algorithm 2 Follow-the-Regularized-Leader (FTRL) for Online Convex Optimization

Input: Initialization x; € &’; strictly convex regularizer R : X — RR; stepsize > 0.
fort=1,...,T do:

1. Play action x; € X and incur cost f;(x;). Observe function f; : X — R.

2. Perform the update:

X¢q1 = argmin {ktzlfk(x) + lR(x)} . (2)

xeX U)

end for

* On the role of the regularizer: In FIRL, the role of the regularizer is to stabilize the
algorithm’s iterates: the regularization term in the objective of (2), weighted by a stepsize
parameter 7, balances the dependence on the next iterate’s dependence on the loss functions
from previous rounds. As the stepsize 1 grows smaller, the influence of the regularizer
relative to the history of loss functions from prior rounds grows larger, increasing the role
of exploration as opposed to exploitation (c.f., the discussion of the MWU algorithm).

¢ Example regularizers: Usually, we will wish to instantiate FTRL with a regularizer R that
has nice analytic properties with respect to the geometry of the decision set X'. For example,
the Euclidean regularizer ||x||3 when X is an ¢, ball, or the negative entropy function
Y.ii1 xilog x; when X is the simplex A,,.
Convexity of the regularizer: As a baseline, we assume in Algorithm 2 that the regularizer
R is strictly convex. Given the convexity of the loss functions {f;} and the compactness of

X, this ensures that the argmin operator in (2) exists and is unique. However, in the main
regret bound we will derive for FTRL, we make the stronger assumption of strong convexity.

For this, we briefly recall below the notion of strong convexity as well as some other tools
from convex analysis that will be used in the remainder of the lecture.

Refresher on strong convexity and dual norms. We recall the notion of strong-convexity,
dual norms, and the generalized Cauchy-Schwarz inequality (for more details and background,
see Orabona (2019, Sections 4.1.1 and 4.2.2), Hazan et al. (2016, Section 2.1), and Shalev-Shwartz
et al. (2012, Section 2.5)):

(a) Strong convexity:

Definition 3. Let « > 0. A differentiable function f : X — R is a-strongly-convex with respect
to || - || iff for all x,x" € X:

F() = )+ (VF(), 2 —2) + 2l = |2

Lemma 4 (Lemma 2.8 of Shalev-Shwartz et al. (2012)). Let X be a nonempty convex set. Let
f : & = R be a-strongly-convex with respect to || - ||. Let x* = argmin,__ , f(x). Then for all
x e X:

«
Fx) = f(x) + S llx =217
(b) Dual norms:
Definition 5. The dual norm || - ||« of || - || is given by ||x[|x = max,, |y <1 (X, x).

Example 6. Fix p > 2. The dual norm of the ¢, norm is the £, norm for (1/p) + (1/g) = 1.
The dual norm of the ¢; norm is the e norm, which is given by ||x[[cc = max;ep, [xil-
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Lemma 7 (Generalized Cauchy-Schwarz). Let || - || be a norm. Then (x,x") < ||x|«||x]| for
all x,x' € R™.

2.2 Intuition for FTRL via Leader-based Algorithms

Before stating its regret guarantee, we develop intuition for the FTRL family via the perspective
of leader-based algorithms.

Be-the-Leader (BTL). Consider the OCO setting as described above with loss functions {f;}.
The Be-the-Leader (BTL) algorithm is an unimplementable, clairvoyant method for choosing
iterates: at every step t 4 1, BTL outputs the action x; € X’ that minimizes the sum of the loss
through and including round t + 1:

t+1
X¢41 = argmin 2 fr(x) . (BTL)
xeX k=1

The BTL algorithm is unimplementable given that x; 1 depends on ¢;1, which violates the
setup of the OCO model. However, this clairvoyant strategy always leads to non-positive regret:

Lemma 8. Let {x;} be the iterates of (BTL) on loss functions {f;}. Then Regpr; (T) < 0.

Follow-the-Leader (FTL). Given the strong regret guarantee of BTL, a natural idea for making
the method implementable is to simply remove the dependence on the current round’s loss
function, and to instead choose the next action based on the sum of losses through the previous
round (for which the learner does already have access to in the OCO setting). This yields the
Follow-the-Leader (FTL) strategy with iterates given by:

t
X¢41 = argmin 2 fr(x) . (FTL)
xeX k=1

Here, note the only key difference between (FTL) and (BTL) is the upper limit in the summation
(through round t + 1 for BTL, and through round ¢ for FTL).

For FTL, we can derive the following, general regret guarantee:

Lemma 9. Let {x;} be the iterates of (FTL) on any sequence of loss functions { f;}. Then
T
Regpry (T) < ) IV fiCxe) lullace — x| -
=1

Remark 10. We make several remarks on the FTL regret bound:

* Dependence on path-length in FTL regret bound:
Suppose that the sequence of loss functions have uniformly bounded gradients. Then
Lemma 9 reveals that the regret of FTL depends on the stability of the iterates {x;}. In
particular, the regret is bounded above by the path-length Y[ ||x; — x;11||. How large can
this path-length quantity grow? In general, linearly in T.

¢ Example — Worst-case bound on path-length in experts setting:
To make the previous point clear, consider the experts setting where X = A, and f;(x) =
(€1, x) for all t. Thus the update rule (FTL) reduces to x;;; := argmin, Zizl(ﬁt,w for
all t > 1. Given the linear nature of this objective, each x; is a vertex of A, (represented
by a standard basis vector ¢; € R"). For every t such that x; # x;y1, it then follows
that ||x; — x4+1|| = 1. Thus, in the worst case, supposing x; # x;41 for all + > 1, then
Lo llxe = x| < T
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e Example — Concrete ()(T) regret lower bound for FTL in experts setting:
The intuition of the previous point directly leads to a concrete lower bound for FIL algorithm.
In particular, consider the experts setting with n = 2, and suppose x; = (p,1 — p) for
p > 0.5. Suppose the adversary then selects /; = (0,—0.9), and ¢; = (—1,0) for even t > 2,
and ¢; = (0,—1) for odd t > 3. Using the definition of (FTL) and Reg., (T), one can
compute for this example that Reg,;, (T) > Q(T). Thus FTL is not a no-regret algorithm
for online learning.

FTL with Regularization. The points of Remark 10 reveal the key failure point of FTL: the
greedy nature of the update rule is highly sensitive to variations in the losses, which can lead
to a lack of stability in the iterates and thus linear regret. The FTRL algorithm attempts to
counter this lack of stability via reqularization. Recalling the update rule of FTRL as stated in
Algorithm 2, we have

, ! R(x)
X¢41 = argmin { ka(x) + } . (FTRL)
xeX k=1 U

The objective in the update (FTRL) is exactly that in (FTL) with the addition of the regular-
ization term. As mentioned in Remark 2, the amount of regularization is controlled by the
stepsize parameter 77. For larger stepsize settings, the amount of regularization decreases, and
the update of (FTRL) approaches that of (FTL). In the experts setting, the regularization leads
to choosing distributions x; € A, that are more uniform or have greater entropy (as opposed to
the point mass distributions that are chosen by FTL).

Main regret guarantee for FTRL. We will prove the following guarantees for FTRL:

Theorem 11. Let {x;} be the iterates of FTRL (Algorithm 2) with strictly convex regularizer R : X —»
R and stepsize 1 > 0 on any sequence of convex and differentiable loss functions { f;}. Then for any
T > 1, the following bounds hold:

(1) Suppose for M > 0 that |R(x) — R(x")| < M for all x,x’ € X. Then:

T
M
Regrrg (T) < Y IV fi(xn)llullxe = xeall + 7
t=1
(2) Moreover, assume R is 1-strongly-convex with respect to || - ||, then for all t > 1:

1t = xpiall < - [V fe(xe) [ -

(3) If in addition there exists L > 0 such that ||V fi(x)||« < L forall t > 1 and x € X, then setting

g = Y.
= L
Regprp, (T) < 2LVMT .

Remark 12. We make the following remarks on Theorem 11:

* On the general regret bound of part (1):
Part (1) of the theorem gives a general regret bound similar to that of Lemma 9 for FTL. In
particular, this bound depends on the stability of the iterates (as well as the norm of the
gradients of the losses) over all rounds. This bound also now depends on the diameter of the
regularizer M.

¢ Stable iterates via strongly-convex regularizer:
Part (2) of the theorem develops the crucial bound on the stability of the iterates ||x; —
x¢+1]] < O(n) under strong convexity of the regularizer.
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¢ Using a time-invariant stepsize:
For simplicity, and similar to the analysis of Online Gradient Descent from Lecture o1, we
stated and analyzed here the FTRL algorithm with time-invariant stepsize 7. To obtain
the final, sublinear regret bound scaling like O(+/T) in Part (3) of the theorem, we set
7 = O(1/+/T). For an analysis using time-varying stepsizes scaling like 7; = 1/+/T),
see Orabona (2019, Section 7.2).

2.3 Proof of FTRL Regret via BTL/FTL Coupling and Stability Bound

We now develop the proof of Theorem 11. To start, we prove the regret bounds for BTL and
FTL which were stated above in Lemma 8 and Lemma 9. Together, these lead to the proof
of Part (1) of the main theorem, which we restate as Lemma 13. We then restate and prove
Part (2) of the main theorem, which establishes the stability of FTRL iterates under strong
convexity of the regularizer, in Lemma 14. The stepsize-instantiated bound in Part (3) of the
main theorem is finally restated and proved in Lemma 15.

Regret bound for BTL. We start by proving the non-positive regret guarantee of BTL from
Lemma 8 (restated here):

Lemma 8. Let {x;} be the iterates of (BTL) on loss functions {f;}. Then Regpr; (T) < 0.

Proof. We prove the claim by induction on t:

* Base case (t=1): Observe by definition of (BTL) that f;(x1) = min,ex f1(x). Then

Regpr; (1) = fi(x1) — min f(x1) = 0.

¢ Inductive case (t>1): Assume the claim holds for all > 1. Observe by definition of (BTL)
that minyey Y4 fi(x) = TiE] fe(xi41). Then

t+1 t+1
Regpr (t+1) = Y filx) — min Y fi(x)

k=1 et

t+1 t+1

= ka(xk) - ka(xtﬂ)
k=1 k=1
= k;fk(xk) - k;fk(xtﬂ) + (fea1 (xe51) = fra1(xe11))

t t
< ka(xk) — min ka(x) = RegBTL(t) <0.
Here, the final inequality comes from the inductive hypothesis. 0

Regret bound for FTL. Using the BTL regret bound, we derive the bound for the FTL
algorithm from Lemma 9 (restated here):

Lemma 9. Let {x;} be the iterates of (FTL) on any sequence of loss functions { f;}. Then

T
RegFTL(T) < Z IV frCoce) sl 2 — x| -
t=1

Proof. Fix the set of loss functions { f;} The proof strategy is to consider the iterates of BTL on
{ft}, and to relate these iterates to those of FTL:
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(i) Couple the BTL and FTL iterates:
Let {#;} denote the iterates of BTL on { f;}. By definition of (BTL) and (FTL), this means
for all + > 1 that

t t
% =argmin }_ fi(x) and x4 =argmin )_ fi(x) .
xeX k=1 xeX k=1
Thus % = x;,1 forall t > 1.

(ii) Couple the FTL and BTL regret terms:
Using the definitions of Reg.; (T) and Regy;; (T), we can then further write

T

T T
filxe) = min Y- fi() = (1 fiCw) —min ) fi(x))

xeX =1

1=

Regr; (T) — Regpr (T) =

H.
Il
—_

Il
1=

fr(xe) = fr(xes1)

H.
Il
—_

where we use the relationship ¥; = x;,1. Rearranging terms, we have

T T

Regpr (T) = ) fi(x) — fi(xes1) + Regpr (T) < ) fi(xr) — fi(xe41) (3)

t=1 t=1
where the inequality comes from the fact that Reggr; (T) < 0 (Lemma 8).

(iii) Use convexity of losses to simplify:
By convexity of f; and applying Lemma 7 we have for all ¢ that

fi(xe) = fe(xii1) < (Vfielxe), xe = xe01) < [V Fe(xe) lellxe — xpga]] - (4)

Substituting (4) into (3), we conclude
T
Regpr (T) < E IV fe(xce) e[ e — xe3a | - [
t=1

Regret bound for FTRL via FTL. Using the regret bound for FIL of Lemma 9, we can further
derive a general regret bound for FTRL. This yields claim (1) of Theorem 11, which we restate
and prove below as the following lemma:

Lemma 13. Let {x;} be the iterates of FTRL (Algorithm 2) with reqularizer R : X — R and stepsize
7 > 0 on any sequence of convex and differentiable loss functions {f;}. Assume for M > 0 that
|IR(x) — R(x")| < M forall x,x' € X. Then

T

M

Regrrg, (T) < 2|\Vft(xt)||*||xt—xt+1||+7-
t=1

Proof. The proof strategy is to consider the output of running FTL on the same sequence of
loss functions {f;} encountered by FTRL, but offset by one day and with the regularizer R as
the first day’s loss function. We break up the proof into the following steps:

(i) Define sequence of coupled loss functions.

First, we define the functions f; : X — R by

{@uwzkuwn
fra1(x) == fi(x) for t > 1.
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Now let {#;} be the iterates of (FTL) run on the sequence {f;}, with #; = x;. Then by
definition of (FTL) and (FTRL), observe for all ¢t > 1 that

A . R(x) | ¢
41 = argmin ) _ fi(x) = argmin —— + ) _ f;(x)

XEX =1 XEX n t=2
t-1
. X A
= argmin (x) + t+1(x)
xekX n t=1
-1

R
=argmin —=+ ) fi(x) = x;.
xekX n t=1
Thus we have the key property that £;,1 = x; for all £ > 1.
(ii) Bound the regret of FTL on the coupled loss sequence.

Fixing x € &, it follows from the regret bound for FIL in Lemma 9 that we can write and
further simplify

T+ A T+1
Yo fr(®) — fi(x) < Regper (T+1) < Y IVA(&) ]2 — 41l (5)
t=1 t=1
TH
= Y IVAE)N R — Resa | (6)
t=2
T A
= Y IV (R [l Rep1 — Rer2l 7)
=1
T
= Y IV llxe = xega (8)
=1

Here, in expression (6) we use the fact that £; = £, = x;, in expression (7) we re-index the
sum, and in expression (8) we use the facts that f;11 = f; and £;41 = x; forall t > 1.

(iii) Relate FTL regret on coupled losses to FTRL regret on true losses.

On the other hand, we also have for fixed x € X that

L

\'\)
Il
=
—~
=
A
SN—
+
1=
™~
~—~~
=>
N
|
N
=
S
=
S~—
+
01~
et
—~
=
SN—
N
o
N

Ui =2 7 t=2
T ¥1) — R(x
= Y f(@ia) — >+R("1),7 RE) (10)
t=1
— Y i) — i) + KB RE) (11)

where we again use the relationships f;1 = f;, ;11 = x4, and £; = x1 as above.

Combining expressions (11) and (8) and rearranging, we have for any fixed x € X’ that

R(x) — R(x1)

. (12)

T
;f( t) = fi(x) < ZHVft (o) llsll2ee = xepa ] +

Minimizing both sides of (12) over all x € X and recalling by definition of M that
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minycy |[R(x) — R(x1)| < M, we find

T T
RegFTRL(T) = th(xt)—aréi;}th(x)
t=1 t=1
T M
< ZHVft(Xt)II*HXt—xtHII+7- O
t=1

Stability of FTRL Iterates via Strongly-Convex Regularizer. Assuming strong-convexity of
the regularizer R, we derive a bound on the stability of the FTRL iterates with respect to the
stepsize 7. This yields claim (ii) of the main Theorem 11, which we restate and prove below in
the following lemma:

Lemma 14. Let {x;} be the iterates of FTRL (Algorithm 2) with reqularizer R : X — R and stepsize
7 > 0 on any sequence of convex and differentiable loss functions {f;}. Suppose further that R is
1-strongly-convex. Then for all t > 1:

llxei1 —xel| <77 [V filoee) [ -

Proof. Fix t > 1. To prove the statement, we define the functions F: X - Rand G: X = R
that are minimized by the actions x;;1 and x;, respectively. Specifically, for x € X, let

F(x) = Zt:fk(x) + R(x)
= ! (13)
t—1 R(x)

G(x) =) filx) + -
=1 Ui

The following properties of F and G hold:
(a) For any fixed x € A

t t—1
F(x) = G(x) = I;fk(X) - k;fk(x) = fi(x) .

(b) F and G are (1/7)-strongly-convex.

This follows from the assumption that the regularizer R is 1-strongly-convex, and the
fact that all f; are convex.

(¢) X441 = argmin _, F(x) and x; = argmin,_, G(x).

This follows from the definition of F and G and the update rule of FTRL. Note in
particular that strong-convexity of F and G imply the uniqueness of their argmin sets.

Combining observations (b) and (c) with the strong-convexity property of Lemma 4, we
then have

1
F(xt) = F(xe11) + zﬂxtﬂ —x||? (14)
1
and  G(xt11) > G(xt) + Eﬂxtﬂ —x?. (15)
Adding expressions (14) and (15) and simplifying yields

1
%1 = x> < F(x) = G(xr) = (F(xe1) — Glxe41)) (16)
= fi(xt) = fe(xi11) (17)
<AV fi(xt), xp — xp41) (18)
< VGl - llxe = el - (19)
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Here, (17) follows from Property (a), (18) follows from the first-order convexity property,
and (19) follows from Lemma 7.

Simplifying further, we find
1
gl\xt — x| S AVl e I = xeall = v —xmall <7 (IVAGx) |,
which proves the claim. ]

Instantiation of FTRL regret bound. We now prove Claim (3) of Theorem 11, which gives a
quantitative regret bound for FTRL under the assumption of a strongly-convex regularizer and
uniformly bounded gradients of the loss functions:

Lemma 15. Let {x;} be the iterates of FTRL (Algorithm 2) with reqularizer R : X — R and stepsize
1 > 0 on any sequence of convex and differentiable loss functions { fi }. Suppose that R is 1-strongly-
convex, that |R(x) — R(x")| < M forall x,x" € X, and that ||V fy(x)|| < Lforall x € X and t > 1.

Then setting n := we have

M
LVT’
Reg; g, (T) < 2LVMT .

Proof. Combining Lemmas 13 and 14, we have for any fixed 7 > 0

L » M 2 M
Regrrg (T) < Z’?HVft(xt)H +7 < 5L T+7
=1

where in the final inequality we apply the bounded gradients assumption. Plugging in the
stepsize setting y = L—‘/\I/VI; then yields the stated bound. O

2.4 Regret bound for MWU via FTRL

We now show that the MWU algorithm for the experts setting (Algorithm 1) is an instantiation
of FTRL using entropic regularization.

(Negative) Entropy Regularizer. The entropy function H : A, — R is given by H(x) =
— Y, xilogx;. This function is 1-strongly concave with respect to the ¢; norm || - ||;. We
will consider the use of the regularizer R(x) = —H(x) (i.e., the negative entropy function).
Given the strong-concavity of H, the negative entropy regularizer R(x) = Y/ ; x;log x;. is
1-strongly-convex with respect to the /; norm (see Hazan et al. (2016, Section 5.4.2) for more
background on the entropy function).

Instantiated FTRL Update Rule. Using the negative entropy regularizer, the update rule
in (FTRL) becomes:

t 1 n
Xj41 := argmin {(x, Y b+ = (in log xi) } (MWU)
XEA, k=1 T N3

Using properties of the entropy function, it can be shown that the objective in (MWU) has a
closed-form solution via the softmax function. In particular, we have the following proposition:

Proposition 16. Let x;1 € A, be defined as in (MWU). Then for all i € [n],

exp (=17 Loy 4l
j—1€Xp < — 1 Lk Ek(j)) |

(20)

x41(i) =

10
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Moreover, using properties of the exponential function, we also have an equivalence
between the softmax expression for x; from Proposition 16 and the multiplicative-update-
based expression for x; from the definition of Algorithm 1:

Proposition 17. Fix a sequence of loss vectors {{;}. Let {p:} be the iterates of Algorithm 1 ini-
tialized from p1 = (1/n,...,1/n) € A,, and let {x;} be the iterates as given in expression (20) of
Proposition 16 intialized from x1 = p1. Then x; = p; for all t > 1.

The proofs of Proposition 16 and Proposition 17 are left as exercises.

Regret Bound for MWU via Theorem 11. Propositions 16 and 17 establish that MWU is the
instantiation of FTRL using the negative entropy regularizer. Thus, by applying the guarantees
of FTRL from Theorem 11, we have the following regret bound for MWU:

Theorem 18. Let {x;} be the iterates of MWU on an instance of the experts setting with loss functions

fi(x) = (b, x) forall t > 1. Suppose that £, € [—1,1]" for all t > 1. Then setting § = V\l/o%gn:

Reg vy (T) < 2+4/logn - T .

Proof. As stated above, the negative entropy regularizer R(x) = Y_I' ; x;log x; is 1-strongly
convex with respect to the /1 norm || - ||;. Moreover, —logn < R(x) < 0 for all x € X.
Additionally, recall by Definition 5 and Example 5 that the o, norm || - ||« is the dual norm of
|| - ||1. Together, the following properties then hold:

(i) Forall t > 1, we have
[V fi(xe)[l« = [|4]]0 < 1.

(ii) Forall x,x" € X,

— N < — mi < .
[R(x) = R(x')| < [maxR(x) — minR(x)| < logn

Then applying Parts (1) and (2) of Theorem 11 with L =1 and M = logn, we find
logn
Regyy(T) < T+ % :

Finally, optimizing the bound over 1 (which amounts to the stated stepsize setting of 1 :=

”\I/OTgH yields the final regret bound Reg,;(T) < 2y/logn - T. O

3 Lower Bounds for Online Learning

In this section, we develop lower bounds for online learning. In particular, we will prove regret
bounds for the experts setting scaling like Q(+/T), and these bounds will hold information-
theoretically (i.e., independent of any algorithm). This implies that the regret upper bound
established in Theorem 11 are optimal in their dependence on T.

Lower Bound Construction for Experts Setting. We present now the components of a lower
bound construction for the experts setting based on (Arora et al., 2012, Theorem 4.1). Consider
the following sequence of loss vectors. For all t > 1:

Lwp.1/2 foralli >2. (21)

1 .
(1) = 5 and /(i) = {O wp. 1/2

11
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For convenience, we define the following pieces of additional notation: first, for i € [n], let
X; = YL 4:(i). Further define ® := min;ep,) X;.

Given this construction, we have the following proposition:
Proposition 19. let {{;} be the sequence of loss vectors defined in (21). Then for any sequence {x;}
where each x; € Ay, the following statements hold:

(i) E [Zthl (xt, £t>] = % where the expectation is over the randomness of the construction.

(ii)) 0 <P < % with probability 1 over the randomness of the construction.

Proof. To prove part (i), observe by definition of the loss vectors /; that, for any t > 1,
n
E[Xt,ft} —E[th } :ZXf(l)Ewt(l)]:*
i=1 2

Here, the equalities follow from the linearity of expectation, the fact that E[¢;(i)] = 3 for all
€ [n] by construction, and the fact that x; € A, and thus Y/ ; x;(i) = 1. Sumrmng over all
t € [T] and again using the linearity of expectation, we find E [ Y/ (x, ¢¢)] = I.

For the part (ii), notice by definition that X; = 1 with probability 1 by construction.
Moreover, X; > 0 for all i given that each ¢;(i) € {0,1}. Thus 0 < ® = min¢, X; < T with
probability 1. O

We also restate the following bound on the tails of the random variable ®.

Lemma 20 (Lemma 4.2 of Arora et al. (2012)). Let X; and ® be defined as above. Then for

a = 0.25,/Tlog(n—1),
Pr [cb <I (x} > 0.05.
5 >

With these preliminaries in hand, we now state the following guarantee:

Theorem 21. Fix n > 2, and consider the random loss vectors defined in (21). Then for any sequence
of distributions {x;}, there exists a realization of the loss vectors {{;} such that

T

T
Z (xt,6) —min Y 4(i) > 0.0125,/Tlog(n—1) .

ie[n] )

Proof. Our goal is to derive a lower bound on the expected regret given by the (random)
sequence loss vectors {/;} on any fixed sequence of distributions {x;}. Recalling the definitions
of X; =YL, 4(i) and ® := min;e(, X;, this expected regret is given by

T

{i xt, ) mmzﬁt } [Z (x¢, ) } —E[D]. (22)

i€ln] = t=1

Now by part (i) of Proposition 19, we have E[Y"L;(x;, ;)] = T/2 for any sequence {x;}.
Thus, to derive a lower bound on (22), it suffices to derive an upper bound on E[®].

For this, recalling from Proposition 19 that 0 < ® < % it follows by definition of expectation
that

E[@= ) ¢-Prl@=¢] = Y ¢Pr[®=¢]+ Y ¢-Pr[®@=¢] (23)

T T T T
0<¢<y7 0<¢p=<7-u 7 a<P=3z

12
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For the first term of (23), we have

Y ¢-Prio=¢] < (g—zx)-Pr[CDSg—zx]. (24)

0<p<T—n

For the second term of (23), we similarly have

Y ¢-Prd=¢] < I-(l—Pr[CDgI—aD. (25)
r r 2 2
7 —a<¢p<y
Substituting expressions (24) and (26) back into (23), we find
T T T
< —-—ua- < = - <
E[®] < - —a-Pr [cb <> a} < 5 —0.05z, (26)

where the last inequality comes from applying the tail bound of Lemma 20.

Combining this upper bound on E[®] with the fact that E[Y./_; (x;, £;)] = T/2, we conclude

E [i(xt,m - miniﬁt(i)} < g - (g - 0.05a)

t=1 S =
= 0.01254/Tlog(n —1),

where in the final equality we apply the setting of « = 0.25,/T log(n —1).

As the bound holds in expectation over the randomness of the loss vectors {/;}, it follows
that there exists a realization of this sequence such that Y/, (x;, £;) — ® > 0.0125,/Tlog(n — 1)
deterministically, which proves the claim. ]
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