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Abstract

Fundamentals of online learning: prediction with expert advice, online convex optimiza-
tion, external regret, and motivating examples. Introduction to Online Gradient Descent
(OGD), and a proof of its regret guarantee.

1 Online Learning Problem Setting

1.1 Introduction

The online learning framework captures sequential decision making problems in adaptive,
non-stationary environments. In its simplest form, online learning consists of a learner tasked
with choosing actions over a sequence of rounds. In each round, after choosing an action, the
learner incurs a loss and observes feedback from the enivornment. The learner’s goal is to
minimize its total incurred loss over time, using the prior feedback to inform its future actions.

Overview of lecture. The goal of this lecture is to formally introduce this problem setting.
We do this in two parts: first, by describing the special prediction with expert advice setting and
the notion of external regret, and then by introducing the more general online convex optimization
setting (of which the former is a special case). Special attention is given to motivating and
distinguishing between the distinct components of the online learning setting: the structure of
the loss functions, the feedback available to the learner, and the choice of regret benchmark.
We will then introduce the fundamental Online Gradient Descent (OGD) algorithm and prove
its regret guarantee.

1.2 Prediction with Expert Advice

Overview of setting. The Prediction with Expert Advice setting (henceforth, the experts setting)
was introduced by Littlestone and Warmuth (1994) and is an instance of the sequential decision-
making scenario described above with a finite action set and linear loss functions. In this setting,
we assume the learner chooses a distribution x; over the actions at each round t. The goal of
the learner is to then use its past observation to minimize its total expected loss over time.

Some notation. To make this setting precise, we briefly recall some notations that will be
used throughout. Let [n] = {1,2,...,n}. Let A, = {x € R" : x; > 0 foralli,and Y[ ;x; =1}
denote the probability simplex over [n]. For u,v € R”", we denote the ¢, inner product
(u,v) = Yi'q u;v;, and the lr-norm by ||u|| = \/(x, x).

The experts setting is then formally defined as follows:

Setting 1.1 (Experts setting). At each round t € [T|:

1. The learner chooses a distribution x; € A,,.
2. An adversary/nature chooses a loss vector £; € R".
3. The learner observes {y and incurs cost (€, xi).

Remark 1. We make several important remarks on this setting:

1. Adversarially-chosen losses: In step (2), we make no assumptions on how the loss vector
!y is generated. In particular, each ¢; could be adversarially chosen and depend on x; (and
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importantly, the learner must choose x; without knowledge of /). On the other hand, the
sequence of loss vectors may also have some nice underlying (non-adversarial) structure.
The model is robust to these different scenarios.

2. Full feedback model: In step (3), the learner observes the loss of all n actions via the vector
£;. We refer to this as the full feedback model.

Measuring performance via regret. The goal of the learner is to minimize its total incurred
cost over time. This quantity is given by the sum Y[, (¢;, x;). However, in online learning
settings, we will measure the performance of a learning algorithm via regret. Roughly speaking,
the regret of an algorithm is the difference between its total incurred loss over time, and the
cumulative loss of some fixed benchmark policy on the same sequence of losses. The most
fundamental benchmark is the policy that plays a fixed action at every round, and this leads
to the definition of external regret:

Definition 2 (External regret in experts setting). Let A be an online learning algorithm. Consider
an instance of Setting 1.1, where A outputs distributions {x;} and the adversary/nature outputs loss
vectors {{;}. Then the external regret of A over T rounds is

T
RegA Z (0, x;) — min Z (b, x) . (1)
=1

= XENA,

In online learning settings, our goal is to design algorithms that guarantee Reg ,(T) grows
sublinearly in T against every sequence of losses. More formally:

Definition 3 (No Regret). Consider an online learning algorithm A for the experts setting. We say that
A is a no-(external)-regret algorithm if Reg ,(T) = o(T) is sublinear. Equivalently, Regff‘m =o(1).

The no-(external)-regret definition implies that on average (over all rounds) the difference
between the incurred cost of the learner and the incurred cost of the best fixed action in hindsight
is zero. In general, algorithms obtaining O(+/T) regret in this setting are optimal (we will see
lower bounds of this order in future lectures).

Remark 4 (On (external) regret). We make several additional assumptions on regret:

1. Computability of the comparator:
First, we will usually refer to a fixed action x* € argmin, ., };—1 (¢, x) as a comparator. We

call mingea, Y1 (4, x) = Y1 (€1, x*) the loss of the comparator.

Observe this comparator can only be computed in hindsight. In other words, the fixed
distribution x € A, that minimizes Y[ (¢, x) can only be computed after all rounds
t =1,...,T have passed. In the online learning setting, the future loss vectors are unknown
to the learner. Thus, the learner cannot simply solve the offline problem min,ea, Y q (41, x).
However, ensuring Reg 4(T) = o(T) means that the cost of the learner’s action choices
“converge” (on average) to the cost of the best fixed distribution in hindsight.

2. Standard assumption of bounded losses:
In the experts setting with linear loss vectors, observe that the best comparator x* €
argmin, _, Yi—1(s, x) is a point-mass distribution (e.g., a vertex of the simplex A, and
standard basis vector e; € R").

While the setup of Step (2) in Setting 1.1 placed no assumptions on the loss vector ¢; € R”,
in order to obtain meaningful (sublinear) regret bounds, we must place some boundedness
conditions on ¢;. In particular, we will usually assume for all t € [T] that ¢; € [—c,c]" for
some constant ¢ > 0. This assumption ensures that the incurred cost per-round is also
uniformly bounded, and allows for a more fair comparison of an algorithm’s performance
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to the best comparator.

Example 5 (Portfolio selection). For clarity, we give the following example of the experts
setting and external regret definition. Consider a portfolio selection task, where in each timestep,
a learner must allocate a firm’s funds over three stocks (e.g., Google, Microsoft, Apple) by way
of choosing an allocation distribution x; = (x;1, x¢2, x13) € A3 over the three stocks. After each
day, the learner observe a loss vector ¢; = ({11, ¢, /;3) specifying each stock’s change in share
price (with negative loss values indicating a rise in share price).

Consider the learner chooses the following sequence of distibutions observes the following
loss vectors:

* Day 1: x1 = (1/3,1/3,1/3) and ¢; = (=9, —6, —1); Thus ({1, x1) = —6.
* Day 2: x, = (2/3,1/6,1/6) and ¢, = (—3,—9, —3); Thus ({3, xp) = —4.
* Day 3: x3 = (1/6,2/3,1/6) and ¢3 = (—12,—3,—3); Thus ({3, x3) = —4.5.

We compute the cost of the best comparator minyen, (X, Y51 ¢;) = min {—24, 18, -7} =
—24, which is minimized by the first stock Google. Meanwhile, the total cost incurred by
the learner’s allocation choices is Y5_;(x,£;) = —14.5. Thus the regret of the learner is
—145— (—24) = 95.

1.3 Online (Convex) Optimization

The experts setting consists of linear loss functions (loss vectors) over the n-dimensional simplex.
We now introduce the more general setting of Online Convex Optimization (OCO), which dates
back to Gordon (1999) and Zinkevich (2003). Here, the losses can now be arbitrary convex
functions, and the action space is a general convex subset of IR". For this, we first recall some
important definitions from convex analysis:

Refresher on convexity. We recall several key notions from convex analysis. For a more
thorough treatment, see Hazan et al. (2016, Section 2.1) and Orabona (2019, Section 2.1.1).

(a) Convex sets and functions:
Definition 6. A set X C R" is convex if for all x,x' € X and A € [0,1]: Ax + (1 —A)x’ € X.
Definition 7. A function f : X — R is convex if for all x,x" € X and A € [0,1]:

fIA=M)x+Ax") < (1= A)f(x) + Af(x)

Lemma 8. Suppose f : X — R is a differentiable function. Then f is convex if and only if for all
x,x' € X:

f() = f(x) 2 (Vf(x),x' = x) .

We now define the OCO setting formally:

Setting 1.2 (Online Convex Optimization). Let X C R" be a convex set. At each round t € [T|:

1. The learner chooses x; € X.
2. An adversary/nature chooses a convex loss function f; : X — R.
3. The learner observes f; and incurs cost fi(x¢).

In the OCO setting, the definition of external regret is the natural generalization of Defini-
tion 2 for the experts setting:

Definition 9 (External regret in OCO setting). Let A be an online learning algorithm. Consider an
instance of Setting 1.1, where A outputs actions {x;} and the adversary/nature outputs loss functions
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{ft}. Then the external regret of A over T rounds is

T

T
Reg ((T) =) fi(x:) — min ;ft(x) : (2)

t=1

Remark 10. We make several remarks on the setting and external regret definition:

1. On the decision set X
When X C R", we will usually assume that the decision set X’ is convex and compact
(e.g., closed and bounded). For example in the experts setting, X := A, satisfies these
assumptions.

2. Full feedback model:
In Step (3) of the setting, we assume the full feedback model where the learner observes the
loss function f;. Given that the learner knows their own action choise x;, this feedback is
equivalent to having access to the gradient V f;(x;) € R".

3. Connection between external regret and average-iterate convergence rates:
When the loss functions are static, meaning f; = f for all ¢ € [T], then upper bounds on the
external regret Reg ,(T) correspond to average-iterate convergence rates for minimizing f.
To see this, let X; := + Y.I_, x; denote the average iterate output by an algorithm A. As f is
convex, by Jensen’s inequality’ we have 1 Y[, f(x;) > f(%:). It follows that

1 1< -
TReg(T) = t;f(xt) min f(x) > f(%) —min f(x)
4. Linear losses are “worst-case” for OCO:
Every sequence of (adversarially-chosen) convex loss functions { f;} “reduces” to a sequence
of linear loss function (loss vectors). To see this, let x* € argmin, _, YL, fi(x). Then by
convexity of f (Lemma 8), we have for each t € [T] that

fi(xe) = fi(x) < (v = 2%, Vfi(xi)) = (x0, Vfi(xi)) — (x5, VSi(xr)) -
Writing ¢; :== V f;(x;) for each t and recalling the definition of x*, observe then that

T T T
Reg th xt Z xt,ét x /€t> S Z<Xt,€t> —Igél? Z<X,€t> . (3)
=1 =1 t=1
Observe that this final term is essentially the definition of regret from the experts setting
(Definition 2)*. Thus, if we can bound an algorithm’s regret against any adversarially-chosen
sequence of linear loss vectors, then equation (3) suggests this bound also applies for the
more general case of convex loss functions. For this reason, we will often focus on the
linear case when analyzing the regret of online learning algorithms. For more discussion,
see (Orabona, 2019, Section 2.3).

1.4 Spectrum of Online Learning Settings

So far, we have introduce the standard OCO setting with (1) possibly adversarially-chosen loss
functions, (2) full feedback (equivalently, gradient feedback), and (3) using external regret as a
measure of performance (e.g., comparator class of fixed actions).

Throughout the course, we study variations of the setting along with each of these three
components. To briefly mention a few of these variations:

'This is the multi-point extension of the first-order convexity condition in Lemma 8.
*The difference in (3) compared to Definition 2 is that the action set X C R” is not necessarily the simplex Ay.
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¢ Structure in loss functions: the sequence of loss functions may be adaptative, but in a
non-adversarial manner (e.g., when generated within a multi-agent games setting). When
the loss function has less variability over time, algorithms may perform better than for worst
case, adversarial sequences.

¢ Feedback: the feedback available to the learner may be limited or noisy. For example, the
learner might only obtain bandit feedback of the form f;(x;) € R. Or, they might obtain a
noisy or biased estimate of V f;(x;) (or f;(x¢)). In these cases, we may expect algorithms to
perform worse compared to the full-feedback setting.

¢ Comparator class: The set of comparators in the regret definiton may extend beyond fixed
actions. Instead, we may consider richer sets of comparators (e.g., that are time-varying)
that correpsond to refined notions of regret. Minimizing these other notions of regret have
consequences for learning equilibria in multi-player games settings.

2 Online Gradient Descent

2.1 Overview

We now discuss a more general online learning algorithm for the OCO setting: Online Gradient
Descent. Online Gradient Descent (OGD) is the natural online analog of standard Gradient
Descent: at every round the learner iteratively updates its action choice in a greedy manner,
moving (roughly speaking) in the direction that maximally reduces its most recent loss.

Under a standard stepsize parameter setting, and assuming a boundedess property on the
feedback observed by the learner, we will state and develop the proof of a sublinear regret
bound for (OGD).

Refresher on Lipschitzness and projections. We first recall a few additional concepts from
convex analysis that are needed for analyzing OGD (see Hazan et al. (2016, Section 2.1)).

(a) Projections onto convex sets:

Definition 11. Let X C IR" be compact and convex. For x € X, define the projection operator

[Ty (x) := argmin,,_, ||x — /|| .

Lemma 12. Let X C R" be compact and convex. For any x € R" and x' € X:

MLy (x) = x| < flx = ]| -

(b) Lipschitzness and boundedness:

Definition 13. A function f : X — R is L-Lipschitz (for a constant L > 0) with respect to || - ||
if, forall x,x" € X:
f() = f <L flx =2 .

Lemma 14. A function f : X — R is L-Lipschitz if and only if |V f(x)|| < L forall x € X.

Online Gradient Descent algorithm. We now state the OGD algorithm:

In step (1) of the algorithm, we assume the learner observes the gradient feedback vector
V fi(x¢) € R" in each round. Recall that this is equivalent to the full-feedback assumption of
Setting 1.2 (c.f., Point 2 in Remark 10).
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Algorithm 1 Online Gradient Descent (OGD) for OCO Setting

Input: Compact and convex set X C R”; initialization xy € X’; stepsize parameter 77 > 0.
fort=1,...,T do:

1. Play action x; € X, and incur cost f;(x). Observe feedback V f;(x;) € R".

2. Perform the update

xpp1 =Ty (xr =V fi(xe)) (4)

end for

Regret guarantee for OGD. Under a time-invariant setting of the stepsize parameter 77, we
have the following, general regret bound for OGD:

Theorem 15. Consider Setting 1.2 with loss functions {f;} and convex and compact decision set
X C R" Let x* € argmin, Y11 fi(x). Then running Online Gradient Descent (Algorithm 1)
with stepsize 1 > 0 achieves

L Ak
Regocn(T) = L. filx) = filx") < g(znm )+W. )

As a corollary, if the learner has access to a uniform bound on the gradient norms (equiva-
lently, if the functions are uniformly Lipschitz), as well as a bound on the diameter of &, then
under an appropriate setting of 7, the following sublinear regret bound is achievable:

Corollary 16. Assume the setting of Theorem 15. Suppose the learner knows (i) a constant L > 0
such that |V fi(x;)|| < L for all t € [T], and (ii) a constant D > 0 such that ||x — x'|| < D for all

! D
x,x € X. Setn = VT Then:

Reg,cp(T) < DLVT.

Remark 17. We make several additional remarks on the algorithm and regret guaratnee:

1. Extending the anlaysis to subgradients:
If the loss functions {f;} are not all differentiable, the OGD algorithm extends naturally to
the case of using subgradients, and the regret guarantee remains the same. See (Orabona,
2019, Section 2.2).

2. Time-varying step sizes:
In the algorithm, we consider the case of a fixed, time-invariant stepsize 1. Moreover, in
Corollary 16, we obtain the final sublinear regret bound with a setting of 77 depending on
the time-horizon T.

In general, we may also want to consider stepsizes that vary with time (and that do not
have a fixed dependence on the time-horizon T). Time-varying stepsize schedules decaying
like 17; = O(1/+/t) lead to similar regret guarantees as in Theorem 15 and Corollary 16.
See Hazan et al. (2016, Theorem 3.1) and Orabona (2019, Theorem 2.13).

2.2 Proof of Theorem 15 and Corollary 16

We develop the proof in several steps:
(i) Upper bound on regret via convexity.

Fix x* € argmin,_, Y;/_; fi(x). Using the definition of Reg,.(T) and the convexity of
the loss functions {f;} (in particular, Lemma 8 applied at each time t), we can write

T

T
Regocp(T) = Y filx:) — Z Vfi(xe), xp — x*) . (6)

t=1
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(ii)

(iii)

(iv)

Control the “instantaneous regret” terms in (6).

We want to derive an upper bound on each term (V f;(x;), x; — x*) from the sum in (6).
For this, we use the OGD update rule of x'™! from (4) to write:

21 — x> = [Ty (Xt - vat(xt)) —x*[?. (7)

By the non-expansivity of the projection operator (Lemma 12) and by expanding the
square, we can further write

T (xe = 7V fi(xe)) = x*|* < e =V fi(xe) — 2% (8)
= |lxe = x> = 27(V fe(x2), xe = ) + P [V fe(xe) >+ (9)
Combining equations (7) and (9) and rearranging, we find

[t = 2|2 = flresn — x*||?

T (10)

(Vfi(xe), x —x7) < gHVft(xt)Hz+ |

Sum the terms in (10) and simplify.

Summing the second term of (10) over all t € [T] yields a telescoping series, and thus

i e — |2 — [l — 22 [l — )2 — [laerin — 2|2 < lx— |2 (11)
=1 2 21 21
Here, the inequality comes from the non-negativity of ||xr;1 — x*||.
Now combining expressions (11), (10), and (6), we conclude that
T T * |2
X1 — X
Regocp(T) < Y (Vfilx),xi—x") < 2( LIIVA(x)I?) + ”2” . (12)
t=1 t=1 n

This proves Theorem 15.
Proof of Corollary 16: instantiate 7.
Under the assumption that ||V f;(x;)|| < L for all + € [T], and that ||x — x'|| < D for all

x,x' € X, expression (12) can be further bounded by

12T D?
Rego.p(T) < 172 +Z- (13)

To obtain the sharpest bound on (13), we set 17 such that the two terms balance, and this
yields a setting of
17L2T B D? ’ D? D

T — T = 1T (14)

Plugging this setting of # into (13), we simplify and conclude

DLVT + DLVT = DLVT.

Regop(T) < > 5 O



SUTD 40.616 — Lecture o1 Topics in Games, Learning, and Optimization

References

Geoffrey ] Gordon. Regret bounds for prediction problems. In Proceedings of the twelfth annual
conference on Computational learning theory, pages 29-40, 1999.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in
Optimization, 2(3-4):157-325, 2016.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212—261, 1994.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th international conference on machine learning (icml-03), pages 928-936,
2003.



	Online Learning Problem Setting
	Introduction
	Prediction with Expert Advice
	Online (Convex) Optimization
	Spectrum of Online Learning Settings

	Online Gradient Descent
	Overview
	Proof of Theorem 15 and Corollary 16


